
Ada 9X Snapshot of
Mapping Specification

Prior to Revision

Version 4.6
5 June 1992

IR-MA-1250-3

Ada 9X Mapping/Revision Team
Intermetrics, Inc.

733 Concord Avenue
Cambridge, Massachusetts 02138

(617)661-1840

Published by
Intermetrics, Inc.

733 Concord Avenue
Cambridge, Massachusetts 02138

Copyright 1992 Intermetrics, Inc.

FOR OFFICIAL USE ONLY in performance of Contract F08635-90-C-0066.

This report has been produced under the sponsorship of the Ada 9X Project Office under contract
F08635-90-C-0066.

Ada 9X Mapping Specification Acknowledgements

Acknowledgements Ada 9X Mapping Specification

Acknowledgements
This document was prepared by the Ada 9X Mapping/Revision Team based at Intermetrics, Inc. The
members of the team are: W. Carlson, Program Manager; T. Taft, Technical Director; R. Duff (Oak Tree
Software); M. Edwards; C. Garrity; R. Hilliard; O. Pazy; D. Rosenfeld; L. Shafer; W. White.

The following consultants to the Ada 9X Project have contributed to the Specialized Needs Annexes:
T. Baker (Real-Time/Systems-Programming — SEI, FSU); B. Brosgol (Information-Systems —
Consultant); K. Dritz (Numerics — Argonne National Laboratory); A. Gargaro (Distribution —
Computer Sciences); J. Goodenough (Real-Time/Systems-Programming — SEI); J. McHugh (Safety-
Critical — Consultant); B. Wichmann (Safety-Critical — NPL: UK).

This work is continuously being reviewed by the Ada 9X Distinguished Reviewers: E. Ploedereder,
Chairman (Tartan); B. Bardin (Hughes); B. Brett (DEC); B. Brosgol (Consultant); N. Cohen (IBM);
R. Dewar (NYU); G. Dismukes (Telesoft); A. Evans (Consultant); A. Gargaro (Computer Sciences);
M. Gerhardt (ESL); J. Goodenough (SEI); T. Harrison (ISSI); S. Heilbrunner (University of Salzburg:
Austria); P. Hilfinger (UC/Berkeley); J. Ichbiah (Consultant: DR emeritus); M. Kamrad II (Paramax
Systems); P. Kruchten (Rational); R. Landwehr (CCI: Germany); C. Lester (Portsmouth Polytechnic:
UK); D. Luckham (Stanford); L. Månsson (TELIA Research: Sweden); R. Mathis (Consultant);
S. Michell (Multiprocessor Toolsmiths: Canada); M. Mills (US Air Force); D. Pogge (US Navy);
K. Power (Boeing); O. Roubine (Verdix: France); W. Taylor (Consultant: UK); E. Vasilescu (Grumman).

Other valuable feedback influencing the revision process is also continuously being received from the
Ada 9X Language Precision Team (Odyssey Research Associates), the Ada 9X User/Implementor Teams
(AETECH, Tartan, Telesoft), the Ada 9X Implementation Analysis Team (New York University) and the
Ada community-at-large.

The Ada 9X Project is sponsored by the Ada Joint Program Office. Christine M. Anderson at the Air
Force Wright Laboratory, Armament Directorate, is the project manager.

Ada 9X Mapping Specification Acknowledgements

-1-2 5 June 1992 (version 4.6)

Reader’s Guide to the Ada 9X Mapping Specification Snapshot Ada 9X Mapping Specification

0. Reader’s Guide to the Ada 9X Mapping Specification Snapshot
This ‘‘snapshot’’ of the Mapping Specification is provided for reference purposes only. It represents an
initial attempt to incorporate the decisions of the April ’92 ISO WG9 and Distinguished Reviewer
meetings. Change bars represent changes relative to version 4.0 of the Mapping Specification.

In some cases, we have not completely fulfilled the recommendations of the WG9 and DR meetings. In
these cases, we have included explanatory notes. We intend to use this document as the basis for the
revision phase, but these cases and others will of course be again open for comment and refinement
during this new phase.

Only chapters 3 to 14 are included.

5 June 1992 (version 4.6) 0-1

Ada 9X Mapping Specification Reader’s Guide to the Ada 9X Mapping Specification Snapshot

2-2 5 June 1992 (version 4.6)

Ada 9X Declarations and Types Ada 9X Mapping Specification

3. Ada 9X Declarations and Types

3.1. Declarations
A declaration introduces a view of an entity (and usually, as in Ada 83, the entity itself). The same entity
may have several different views. For example, a private type declaration and the corresponding full type
declaration introduce different views of the same type. This term will be defined more precisely during
the revision; we use it in this document to explain such things as conversions of actual parameters (see
4.6).

Protected_declaration (see 9.5) is added to the list of basic declarations.

3.2. Objects and Named Numbers

3.2.1. Object Declarations
[Note: We were asked to further investigate the issue of parameterized parallel task activation. Here is a
possible alternative approach:

To support parameterized parallel task activation, it would be useful to allow an object declaration of an
anonymous limited array type to allow an iterator notation, as follows:

object_declaration ::=
... -- As in Ada 83
| identifier_list : array(for identifier in discrete_range

{, for identifier in discrete_range})
of limited_type_mark discriminant_constraint;

Such a declaration would initialize an array of limited components, with the discriminant constraint
expressions parameterized by the identifiers appearing in the iterators. This provides more direct support
for parallel parameterization than the iterator-in-aggregate mechanism, since parallel activation is already
the rule for an array of tasks. By restricting it to limited types, we avoid problems associated with
assigning or comparing ragged arrays, while allowing it to be used for arrays of protected objects acting
as device drivers, etc.]

3.2.2. Number Declarations

3.3. Types and Subtypes
As in Ada 83, a type has an associated set of values, and an associated set of operations. A class is a set
of types with similar values and operations, which is closed over derivation. As in Ada 83, types are
grouped into language-defined classes, such as integer, real, task, etc. In addition, in Ada 9X, types are
grouped into derivation classes, each formed by the root type for the class and its derivatives (direct and
indirect).

A specific type is a type declared by a type declaration, task type declaration, or protected type
declaration. In addition to specific types, there are class-wide types (used in conjunction with task types
and tagged types, -- see 3.4.1) and universal types (used in conjunction with numeric types -- see 3.5.4
and 3.5.6).

5 June 1992 (version 4.6) 3-1

Ada 9X Mapping Specification Ada 9X Declarations and Types

A type is either an elementary type or a composite type. Elementary types are the scalar types and access
types. Composite types are the array, record, private, task, and protected types. (Protected types are
described in chapter 9.)

[Notes on terminology: The term ‘‘specific type’’ corresponds to the normal types in Ada 83. It is
introduced to differentiate them from the (new) ‘‘class-wide’’ types and the (preexisting) ‘‘universal’’
types.

In Ada 83, composite types include only record and array types. Here we generalize it to include all types
other than scalar and access. The term ‘‘elementary type’’ is new with Ada 9X, to simplify descriptions
that in Ada 83 use the phrase ‘‘scalar and access types.’’]

3.3.1. Type Declarations
A type declaration introduces a type and a first-named subtype. The name given in the type declaration is
the name of the subtype. [Note: This is true in many cases for Ada 83; for simplicity, we make it true in
all cases for Ada 9X.]

As in Ada 83, a subtype determines a type and a possibly null constraint. An unconstrained subtype is
one with a null constraint. Given a subtype S for an elementary type, S’BASE denotes the unconstrained
subtype of the same elementary type.

In later descriptions, when we refer to properties of a ‘‘type T,’’ we are describing properties that apply to
the type in general, rather than to any particular subtype of the type.

[Note: Types are never directly named; all type marks denote subtypes. Therefore, when we use the term
anonymous type we really mean a type that has no nameable subtypes. Anonymous types are declared
implicitly as part of certain other declarations, such as single task declarations, single protected
declarations, and array and access definitions.]

3.3.2. Subtype Declarations
Floating point and fixed point accuracy constraints are removed from the syntax. A decimal digits
constraint may be applied to a decimal fixed point type (see 3.5.9).

constraint ::=
range_constraint

| index_constraint
| discriminant_constraint
| decimal_digits_constraint

It is illegal to apply a constraint to a tagged class-wide type (see 3.4.1) or to a generic formal type with
(<>) for its discriminant part (see 12.1.2), as they have an unknown set of discriminants.

3.3.3. Classification of Operations
The primitive operations of a specific type are the implicitly declared operations of the type, and, for a
type declared within a package specification, any subprogram with a formal parameter of the type, result
of the type, or access parameter (see 3.9) designating the type, explicitly declared immediately within the
same package specification as that of the type declaration. For a protected or task type, the primitive
operations also include the protected operations (see 9.7).

3-2 5 June 1992 (version 4.6)

Ada 9X Declarations and Types Ada 9X Mapping Specification

The implementation of an implicitly declared primitive operation may be overridden by providing a new
declaration for the primitive operation, immediately within the same package specification or declarative
part as that of the type declaration.

We define operand matching rules that determine what operands may be passed to what operations. To
simplify description, we say that one type covers another if they are the same type, or if the first type is
the universal or class-wide type for a class that contains the second type. The expected type for an
operand determines the types that are allowed for actual operands, as follows:

• If the expected type and the actual type are both specific types, then they must be the same
type;

• If the expected type or the actual type is a universal type then one of the types must cover the
other;

• If the expected type is a class-wide type, then it must cover the actual type;

• If the expected type is a specific type, and the actual type is a class-wide type, then the
operand must be a controlling operand (see 3.4.2) and the class-wide type must be for the
class rooted at the expected type.

If the formal is an access parameter (see 3.9), then the actual operand is the object designated by the
value of the actual parameter, and the expected type of that operand is the designated type of the access
parameter.

Class-wide and universal types do not have their own primitive operations, nor any implicitly declared
operations other than attributes. Because of the operand matching rules, the primitive operations of the
root type for a class may be used for operands of the corresponding class-wide or universal type.

A subprogram with a formal parameter or result of a class-wide type may be explicitly declared. Such
subprograms are referred to as class-wide operations.

For an elementary subtype S, the attribute S’BASE is allowed to appear wherever a type mark may
appear, rather than strictly as a prefix for other attributes.

3.4. Derived Types
The syntax for a derived type definition is amended to include an optional type extension part (see 3.4.1):

derived_type_definition ::=
new subtype_indication [type_extension_part]

A type extension part is allowed only for tagged types (see 3.4.1).

The description of the characteristics of a derived type is revised as follows:

• The value set of a derived type is a (possibly modified) copy of the parent’s value set. The
copy is modified in these cases:

• If the derived type declaration includes a discriminant part (see 3.6.1), then the parent
subtype must be constrained, and the discriminants of the derived type are those given
in the new discriminant part. Otherwise, as in Ada 83, the derived type has the same
discriminants as the parent type, if any. [Note: The constraint on the parent may
depend on the new discriminants — see 3.6.1.]

• If the derived type declaration includes a record extension part (see 3.4.1), then the

5 June 1992 (version 4.6) 3-3

Ada 9X Mapping Specification Ada 9X Declarations and Types

parent subtype must be constrained, and the values consist of the discriminants (if any),
followed by the non-discriminant components of the parent type, followed by the
components of the record extension part.

• The derived type inherits the primitive operations of the parent type that are declared prior to
the derivation, obtaining the specification of these operations by systematic replacement of
the parent type with the derived type, where it appears as the type of a formal parameter or
result (as in Ada 83 — see RM 3.4(13)), or as the designated type of an access parameter (see
3.9).

• If an explicitly declared primitive operation of a derived type is a homograph of an inherited
operation, then the explicitly declared operation overrides the inherited one.

• As in Ada 83, when STANDARD.BOOLEAN is the parent type, the result type is not
replaced when inheriting the predefined relational operators and membership tests; the result
type remains STANDARD.BOOLEAN for these operations of the derived type (RM
3.4(21)).

For a composite type, the parent part consists of all components inherited from the parent type, and the
extension part consists of any other components.

The parent type in a derived type definition must not be a class-wide type, nor an unconstrained generic
formal type with an unspecified set of discriminants (see 12.1.2).

3.4.1. Tagged Types and Type Extensions [new]
A tagged type is a record or private type that provides a type tag that represents, at run time, the identity
of the type. Tagged types support type extension (see below). A record or private type is tagged if its
declaration includes the reserved word tagged, or if it is derived from a tagged type.

The derived type definition for a type derived from a tagged type must include a type extension part:

type_extension_part ::=
with record_type_definition

| with private
| with null

A tagged type must be extended with either a record extension part (with record_type_definition -- see
3.8.2), private extension part (with private -- see 7.4.2), or null extension part (with null). A derived
type defined in one of these ways is called a type extension of its parent type. [Note: By requiring with
null we ensure that all tagged types include either the reserved word tagged or with in their declaration.
Furthermore, it emphasizes that normal type conversion cannot be used to construct a value of the derived
type given a value of the parent type, but instead an extension aggregate using with null must be used
(see 4.3.1). This should enhance readability (at some expense of writability, though we expect null
extensions to be less common than record extensions.]

3-4 5 June 1992 (version 4.6)

Ada 9X Declarations and Types Ada 9X Mapping Specification

Example of declaration and extension of a tagged type:

type VEHICLE is tagged
record

WEIGHT : KILOGRAMS;
end record;

type CAR is new VEHICLE with
record
NUMBER_OF_DOORS : POSITIVE range 1..5;
NUMBER_OF_WINDOWS : POSITIVE range 4..8;
NUMBER_OF_WHEELS : POSITIVE range 3..4;

end record;

When a tagged type T is declared, an associated class-wide type, denoted by T’CLASS, is implicitly
declared. The value set for T’CLASS is the union of the value sets of the specific types in the derivation
class rooted at T. The union is a discriminated union, with the type tag as the (implicit) discriminant.

Given a tagged subtype S for the type T, S’CLASS denotes a subtype of T’CLASS. A value of type
T’CLASS belongs to S’CLASS if it satisfies the constraints applicable to S.

If a tagged type’s parent is not limited, then any extension part must not contain any limited components.
The scope level (see 8.2) of a derived tagged type declaration must be the same as that of its parent.
[Note: Thus, all types included in a tagged class are at the same scope level.]

A primitive operation of a derived tagged type that overrides an inherited operation must be subtype
conformant (see 6.3.1) with the inherited operation.

For a tagged type, the declaration of a primitive operation must not occur after a forcing occurrence (see
RM 13.1(6)) of the type. [Note: This restriction minimizes confusion by ensuring that the
implementation reached via a dispatching call corresponds to the operation declared immediately within
the declarative region where the type is declared. This also implies that all overridings for a tagged type
must be declared prior to subprogram bodies, even for tagged types declared in a package body.]

The declaration of a tagged derived type with a record or null extension part is considered a forcing
occurrence for the parent type. [Note: This combined with the previous rule ensures that all derivatives
of a tagged type inherit all of its primitive operations, so that dispatching will work properly.]

Each tagged specific type T has a tag value, which represents the identity of the type at run time. A tag
value uniquely identifies a particular tagged type declaration. Repeated elaborations of the same
declaration need not produce distinct tag values, nor do repeated instantiations of the same generic body.
However, distinct instantiations of the same generic specification containing a declaration for a tagged
type must produce distinct tag values.

Each value of a tagged class-wide type has a tag, which reflects the specific type from which the value
originated, possibly through one or more (view) conversions (see 4.6).

Each object of a tagged class-wide type must be explicitly initialized, and is constrained thereafter to hold
only values with tag and any discriminants matching those of its initial value.

5 June 1992 (version 4.6) 3-5

Ada 9X Mapping Specification Ada 9X Declarations and Types

3.4.2. Operations of Tagged Types [new]
By definition, a primitive operation (see 3.3.3) of a type T has a formal parameter of type T, return type
T, or an access parameter (see 3.9) designating T. The actual parameter passed to a formal parameter of
type T is called a controlling operand of the primitive operation. The object designated by the actual
parameter passed to an access parameter designating T is also a controlling operand. If the return type is
T, the result of the operation is called a controlling result of the primitive operation.

For a tagged type, the primitive operations are called dispatching operations, because when applied to a
controlling operand that is class-wide, they automatically dispatch to the appropriate implementation of
the operation.

A call to a dispatching operation of a tagged type T works as follows:

• If there are no class-wide controlling operands anywhere in the context that determine the tag
(as defined by the next bullet), then the controlling tag value is by definition that for T. (this
is a normal ‘‘static’’ binding case).

• Otherwise, each controlling operand determines a tag:
• If the operand is class-wide, the tag is that of the operand’s value;

• If the operand is a controlling result of a dispatching operation, the tag is the same as
the controlling tag value of that operation;

• Otherwise, the tag is that of the specific type of the operand (which, according to the
matching rules, must identify T, i.e. this is a ‘‘static’’ binding case).

If all controlling operands determine the same tag value, then this is the controlling tag value
for the operation. Otherwise, CONSTRAINT_ERROR is raised, or, in the case of an equality
operator ("=" or "/=") whose result is of type BOOLEAN, inequality is indicated.

• The controlling tag value determines the particular implementation of the operation to be
invoked. The implementation selected is the one for the corresponding primitive operation of
the specific type identified by the tag.

If a dispatching operation has a controlling result, but has no operand that determines a tag, then its
controlling tag is chosen to match that required by its context, in order to avoid CONSTRAINT_ERROR.

If a single operation is a primitive for more than one tagged type, then in a given call, only one of the
types may have actual controlling operands that are class-wide. [Note: We shifted this check to the call
rather than the declaration, to handle situations where an operation is declared on two private types that
both turn out to be tagged in their full type declarations.]

[Note: We are also considering disallowing calls where some of the controlling operands of a given type
are class-wide, while others have statically-determined tags. Such calls seem to be a possible source of
confusion.]

If a tagged type has any primitive operations that are declared as abstract (see 6.1), then it is called an
abstract type, and it is illegal to create an object of that type, and a value of the type must only be
produced via a conversion (see 4.6). [Note: This disallows, for example, object declarations, allocators,
aggregates, using the type as a generic actual, and non-abstract functions returning the type.]

When calling an abstract primitive operation of a tagged type T, the controlling tag value must not be that
of type T. [Note: This check can be performed at compile-time, because there are no values of the class-
wide type T’CLASS with tags identifying type T.]

3-6 5 June 1992 (version 4.6)

Ada 9X Declarations and Types Ada 9X Mapping Specification

When deriving from an abstract type, all primitive operations that are abstract for the parent type must be
overridden for the derived type, possibly with another abstract subprogram declaration (see 6.1). As in
Ada 83, an inherited operation with a result of the derived type is defined in terms of a conversion of the
result returned by the parent type’s operation. If the parent type is tagged, conversion to the derived type
is not defined (see 4.6), so the inherited operation must be overridden, just as though it had been an
abstract operation of the parent type.

Note:

All primitive operations of a tagged type are dispatching, whether inherited, defined by an instantiation, a
renaming declaration, or a normal subprogram declaration. On the other hand, non-primitive operations
are never dispatching, even when they are defined by renaming a dispatching operation.

3.5. Scalar Types

3.5.1. Enumeration Types

3.5.2. Character Types
The predefined type CHARACTER will be changed to have 256 positions, the first 128 of which will
correspond to ASCII. A new predefined type WIDE_CHARACTER will be provided, to support
character sets with more than 256 positions, in accordance with the recommendations of the CRG (see
chapter 2).

All character literals are directly visible throughout their scope. The type of a character literal must be
determinable solely from context, but using the fact that the literal is a value of some character type. The
character literal must be one of the character literals of the type (although this is not used to determine the
type of the literal). [Note: This is to be consistent with other ‘‘unrenamable’’ literals: string literals; null;
and the numeric literals (see RM 4.2(4)). Since there will be two character types in scope at all times
(CHARACTER and WIDE_CHARACTER), it is simpler to always use context to resolve the type of a
character literal than to try to use the particular character itself to determine the type.]

3.5.3. Boolean Types

3.5.4. Integer Types
By definition, all integer types are derived (directly or indirectly) from root_integer. In addition, a
universal type, universal_integer, is defined for the integer class. Integer literals and integer named
numbers are defined to yield a value of this universal type. The operand matching rules (see 3.3.3) allow
a universal integer to be used as an actual operand if the expected type is some specific integer type.

The VAL attribute is defined to have an operand of the universal type universal_integer, which allows an
actual operand of any integer type.

Values of universal_integer may be combined using the predefined operators of any specific integer type.
However, in the case of ambiguity, there is a preference for the operators of the root_integer type (see
8.7). [Note: The operators of root_integer correspond to the predefined operators of universal_integer in

5 June 1992 (version 4.6) 3-7

Ada 9X Mapping Specification Ada 9X Declarations and Types

Ada 83. The result of such an operator is never universal. This eliminates the need for the special case
rules governing ‘‘convertible universal operands’’ given in RM 4.6(15).]

The value set for all integer types is the (infinite) set of mathematical integers. For static calculations
with the operators of root_integer, an implementation must support all such values (see 4.9). For run-
time calculations, an implementation may restrict integer values to a finite range. The FIRST and LAST
attributes of an unconstrained integer subtype specify the minimum range supported by the
implementation for run-time operations on values of the corresponding integer type. At run-time, a
predefined operation taking or yielding an integer value outside of this minimum range either produces
the correct mathematical result, or raises CONSTRAINT_ERROR.

As in Ada 83, the FIRST and LAST attributes of a constrained integer subtype represent constraints on
the value of any object of the subtype.

The run-time range of the root_integer type is at least SYSTEM.MIN_INT .. SYSTEM.MAX_INT (see
RM 13.7.1).

STANDARD.INTEGER’LAST is at least 2**15-1. If an implementation provides
STANDARD.LONG_INTEGER, then the value of its LAST attribute is at least 2**31-1.

As in Ada 83, an integer type definition selects a parent type from one of those defined in package
STANDARD. These types are called the standard integer types. An implementation may also provide
additional non-standard integer types declared outside package STANDARD. Such types may have a
run-time range outside of SYSTEM.MIN_INT .. SYSTEM.MAX_INT, and need not be symmetrical
around zero. An implementation may restrict the use of such types; in particular, they need not be
allowed as array or loop indices. [Notes: Non-standard integer types may not be used as generic actual
types for a formal integer type or formal discrete type -- only for formal private and formal derived types.
The System Programming Annex defines requirements for unsigned types to be provided in package
SYSTEM.UNSIGNED_SUPPORT. Such types are considered non-standard integer types.]

3.5.5. Operations of Discrete Types

3.5.6. Real Types
The syntax is amended to remove accuracy constraints, as explained in section 3.3.2.

real_type_definition ::=
floating_point_definition | fixed_point_definition

By definition, all real types are derived from root_real. In addition, a universal type universal_real is
defined for the real class of types. Real literals and real named numbers are of type universal_real, as are
the results of certain attributes.

Values of type universal_real may be combined using the predefined operators of any specific real type.
However, in the case of ambiguity, there is a preference for the operators of root_real (see 8.7).

The value set for all real types is the infinite set of rational numbers. For static calculations with the
operators of root_real, an implementation must support all such values. For run-time calculations, an
implementation may use approximations and may restrict the range. The attributes of a real type define

3-8 5 June 1992 (version 4.6)

Ada 9X Declarations and Types Ada 9X Mapping Specification

the maximum relative (floating-point) or absolute (fixed-point) error and minimum range supported by
the implementation for representing and operating on run-time values. If the MACHINE_OVERFLOWS
attribute is true, then at run-time, a predefined operation taking or yielding a real value outside of this
minimum range either produces the correct result (as defined by the accuracy model — see NM:ALL), or
raises CONSTRAINT_ERROR.

As in Ada 83, the FIRST and LAST attributes of a constrained real subtype represent constraints on the
value of an object of the subtype.

At run-time, the root_real type is a floating point type, and its DIGITS attribute is at least
SYSTEM.MAX_DIGITS (see RM 13.7.1). The LARGE attribute for root_real is at least as great as any
other floating point type declared in STANDARD with DIGITS equal to SYSTEM.MAX_DIGITS.

STANDARD.FLOAT’DIGITS is at least 6. If an implementation provides
STANDARD.LONG_FLOAT, then the value of its DIGITS attribute is at least 11.

In accordance with AI-00174, the values of the FIRST and LAST attributes of a real type depend on the
representation chosen for the type. Therefore, a range constraint on a real type is a forcing occurrence
(RM 13.1(6)) for the type. [Note: This eliminates certain anomalies relating to the fact that determining
whether a range constraint is compatible with the real type requires selecting the representation for the
type.]

As in Ada 83, a floating point or fixed point type definition selects a parent type from one of those
defined in package STANDARD. These types are called the standard real types. An implementation
may also provide additional non-standard real types declared outside package STANDARD. Such types
may have a DIGITS attribute greater than SYSTEM.MAX_DIGITS, or a mantissa greater than
SYSTEM.MAX_MANTISSA. An implementation may restrict the use of such types; in particular, they
need not have a full set of attributes. [Notes: Non-standard real types may not be used as generic actual
types for a formal floating point type or formal fixed point type.]

3.5.7. Floating Point Types
The syntax is amended to remove accuracy constraints, as explained in section 3.3.2.

floating_point_definition ::=
digits static_simple_expression [real_range_specification]

real_range_specification ::=
range static_simple_expression .. static_simple_expression

3.5.8. Operations of Floating Point Types

3.5.9. Fixed Point Types
The syntax is amended to remove accuracy constraints, as explained in section 3.3.2.

5 June 1992 (version 4.6) 3-9

Ada 9X Mapping Specification Ada 9X Declarations and Types

fixed_point_definition ::=
delta static_simple_expression real_range_specification

| decimal_fixed_point_definition

decimal_fixed_point_definition ::=
delta static_simple_expression
digits static_simple_expression [real_range_specification]

decimal_digits_constraint ::=
digits static_simple_expression [range_constraint]

A fixed point type declared with both a delta and a digits is a decimal fixed point type. The specified
delta must be a power of 10, and the small is defined to equal the delta.

The DIGITS attribute of a decimal fixed point subtype is determined by the decimal digits constraint that
applies to it. The FIRST and LAST attributes of a decimal fixed point subtype are determined by the
range constraint, if any, that applies to it. In the absence of a range constraint, the FIRST and LAST
attributes are determined by the applicable digits constraint, such that LAST = delta*(10.0**digits-1.0)
and FIRST = -LAST.

Notes:

For implementations that conform to the Information Systems Annex, smalls that are a power of 10 must
be supported, as well as at least 18 digits for a decimal fixed point definition. See IS:ALL.

3.5.10. Operations of Fixed Point Types

3.6. Composite Types [new]
Composite types may have components, including special components called discriminants.

The rules regarding declarations of a variable of a composite type are relaxed to conform to the rules
regarding constant declarations, namely that if the subtype indication is for an unconstrained subtype with
undefaulted discriminants or unconstrained array bounds, then there must be an initialization expression,
and the constraints of the variable are defined by the initial value.

3.6.1. Discriminants [originally RM 3.7.1]
Discriminants represent a general method for parameterizing types. The syntax for discriminant
specifications is modified to allow an access discriminant, with a type specified by an access definition
(see 3.9):

discriminant_specification ::=
identifier_list : type_mark [:= expression]

| identifier_list : access_definition [:= expression]

A discriminant part may only be specified in a type declaration for a composite type that is not an array
type. The type of an access discriminant is an anonymous general access type (see 3.9). The type of
other discriminants must be discrete.

3-10 5 June 1992 (version 4.6)

Ada 9X Declarations and Types Ada 9X Mapping Specification

Only a limited type may have an access discriminant.

If a discriminant part is specified in a derived type declaration, then the parent subtype must be
constrained.

Analogous to the Ada 83 rule for component constraints (RM 3.7.1(6)), when a discriminant is used in a
constraint on the underlying type, it must appear alone (not as part of a larger expression). In addition, if
discrete, its subtype must be statically compatible with the underlying discriminant subtype (see 4.9.1).
[Note: This restriction minimizes the checking required on type conversion. See 4.6.]

For a tagged type, the discriminants specified in a derived type declaration need not be used to constrain
the parent subtype.

Within the definition of a type with a discriminant part, the name of a discriminant may be used in an
expression. However, as in Ada 83, a discriminant may not be used in a component’s range constraint,
and when used in other constraints, it must be used alone, not as part of a larger expression. Within a task
or protected body, a discriminant acts as a formal in parameter to the unit.

3.6.2. Discriminant Constraints [originally RM 3.7.2]

3.7. Array Types [originally RM 3.6]

3.7.1. Index Constraints and Discrete Ranges [originally RM 3.6.1]
The rules for determining the type of a discrete range are revised so that if the type for both bounds is
either root_integer or universal_integer, then the type for the range is STANDARD.INTEGER. [Note:
This resolves the Ada 83 problem where ‘‘for I in -1 .. 100’’ is ambiguous.]

3.7.2. Operations of Array Types [originally RM 3.6.2]

3.7.3. String Types [originally RM 3.6.3]
An additional predefined string type WIDE_STRING will be provided, defined as an array of
WIDE_CHARACTERs indexed by POSITIVE, in accordance with the recommendations of the CRG (see
chapter 2).

3.8. Record Types [originally RM 3.7]
A type definition for a record type may include the reserved words tagged and limited:

type_definition ::=
. . . as in Ada 83

| [tagged] [limited] record_type_definition

If the reserved word tagged appears, the record type is a tagged type, and may be extended in a type
derivation (see 3.4.1). If the reserved word limited appears, the record type is limited throughout its
scope (that is, equality and assignment are not predefined — see 7.4.5).

[Note: The concept of an explicitly limited record type has been retained pending further review.

5 June 1992 (version 4.6) 3-11

Ada 9X Mapping Specification Ada 9X Declarations and Types

Because finalization, limited type extension, and access discriminants are all dependent on the use of
limited types independent of privateness, we prefer to retain the ability to specify limitedness without
specifying privateness.]

[Note: The subsections on Discriminants have been moved to 3.6.1 and 3.6.2.]

3.8.1. Variant Parts [originally RM 3.7.3]
[Note: As in Ada 83, a discriminant controlling a variant part must be discrete.]

3.8.2. Record Extension [new]
A tagged record or tagged private type may be extended with a record extension part (see 3.4.1).

Within the extension part, the value of an access discriminant (see 3.6.1) of a component may be specified
by an ACCESS attribute whose prefix is the simple name of the derived type being declared. When used
in this way, the attribute designates the enclosing object being initialized. [Note: This allows a form of
‘‘multiple inheritance,’’ by embedding a component with an access discriminant that designates the
enclosing object.]

[Note: The Ada 83 rules for naming of record components (RM 3.7(3)) imply that overriding the
components of a visible record type in the extension part is illegal. However, in a record extension of a
private type, a component in the extension part may have the same name as a component of the private
parent part; as in Ada 83, the parent part remains private throughout the scope of the type extension.]

3.8.3. Operations of Record Types [originally RM 3.7.4]

3.9. Access Types [originally 3.8]
The syntax for access type definitions is changed to support general access types (including access-to-
constants) and access-to-subprograms.

access_type_definition ::=
access [general_access_modifier] subtype_indication

| access [protected] procedure [formal_part]
| access [protected] function [formal_part] return type_mark

general_access_modifier ::= all | constant

An access value is either null, or designates some entity. Access-to-object values designate objects.
Access-to-subprogram values designate subprograms.

There is a storage pool associated with each access-to-object type. An allocator for an access-to-object
type allocates in that type’s pool.

An access type with a general access modifier is a general access type. Values of a general access type
may be produced by allocators, by conversion from other access types (see 4.6), and by use of the
ACCESS attribute (see 3.9.2). If the modifier is the reserved word constant, then the designated object
may only be read through a value of such a type. If the modifier is the reserved word all, then the
designated object may be both read and updated through a value of such a type.

3-12 5 June 1992 (version 4.6)

Ada 9X Declarations and Types Ada 9X Mapping Specification

Other access-to-object types are pool-specific access types, which correspond to the access types of Ada
83. Values of such types may only be produced by allocators (and, as in Ada 83, by conversion from an
access type derived from some common ancestor).

An access definition may be used to specify a formal in parameter (see 6.1) or a discriminant (see 3.6.1):

access_definition ::= access type_mark

Such a parameter or discriminant is of an anonymous access type. An anonymous access type is a general
access-to-variable type, implicitly declared at the point of the access definition. Its designated subtype is
that denoted by the type mark. An anonymous access type has no primitive operators of its own. [Note:
An access discriminant or parameter may be converted (see 4.6), used as a prefix of a name (see RM
4.1(8)), used to initialize another access discriminant, or passed as an actual parameter where the formal
is an access parameter (see 3.3.3).]

[Notes:

The language rules (see 3.9.2 and 4.6) ensure that (unless the unchecked programming features of Chapter
13 are used) a pool-specific access value will always designate an object allocated from its own pool. By
contrast, a general access value can designate an object allocated from any pool, or created by an aliased
object declaration, so long as the object is of an appropriate subtype and scope level.

Which pool is associated with an access type is implementation defined, if not user specified. Sections
13.2 and SP:ALL define methods for specifying the storage pool of an access type, and for specifying
various aspects of the pools themselves. Several access types may share the same pool.

Access parameters support tag-based dispatching on access values (see 3.4.2). They also provide a way
to pass a reference to an aliased local variable to a subprogram. All objects of an anonymous access type
are constants. The object designated by an access discriminant or parameter is a variable. A value of an
anonymous access type is never null. A run-time check is made when the value of an access parameter or
discriminant is specified to ensure that it is not null (see 4.6). A run-time scope check is performed when
an access parameter is converted to another general access type, to ensure that it is not designating an
object at a deeper scope-level than that of the resulting access type (see 4.6).

Pools and the terms ‘‘general’’/‘‘pool-specific’’ are not defined for access-to-subprogram types.

There is no requirement that the ACCESS attribute of a particular subprogram always yield the same
value. The value of the attribute may designate, for example, a locally generated interface routine needed
to support an indirect call.

End of Notes.]

3.9.1. Incomplete Type Declarations [originally 3.8.1]

3.9.2. Operations of Access Types [originally 3.8.2]
General access types may only designate aliased objects. The object created by an allocator is an aliased
object. All objects of a limited tagged type, or non-private limited type, are inherently aliased. [Note:
We would have made all limited types inherently aliased, except that a limited private type may be
completed with an elementary type, which can’t be passed by reference. Inherent aliasing is important for

5 June 1992 (version 4.6) 3-13

Ada 9X Mapping Specification Ada 9X Declarations and Types

parameter passing and function return of task types, protected types, controlled types, types with access
discriminants, and types composed of such types (see 7.4.5). This issue will receive further study during
the revision phase.] An object or component with the reserved word aliased in its object or component
subtype definition is aliased. The following new syntax is provided for this purpose:

object_declaration ::=
identifier_list : [constant] object_subtype_definition

[:= expression];

object_subtype_definition ::=
[aliased] subtype_indication

| [aliased] array_type_definition

component_subtype_definition ::= [aliased] subtype_indication

unconstrained_array_definition ::= ... of component_subtype_definition

constrained_array_definition ::= ... of component_subtype_definition

An aliased object with discriminants is constrained by the initial value of its discriminants, whether
created by an allocator or by a declaration. [Note: For allocators, this corresponds to the rule in Ada 83.
The rule is necessary to support access subtypes safely.]

For a type T, an allocator new T is overloaded on all access types designating types that cover T. If T is a
tagged class-wide type, then the allocator must specify an initial value.

For an aliased object X of type T, X’ACCESS is overloaded on all general access types designating types
that cover T.

For X’ACCESS, the constraints of X must statically match (see 4.9.1) the constraints on the designated
subtype of the result type, unless it is an unconstrained subtype with discriminants. In Addition, the same
representation clauses and pragmas must apply to X that apply to the designated subtype. Finally, X must
not be a subcomponent that depends on discriminants of a variable, if the discriminants have defaults, and
the variable might be unconstrained (see RM 8.5(5)). If X is constant, then the type of X’ACCESS must
be an access-to-constant type. The scope level of X must not be deeper than that of the resulting access
type.

The attribute S’ACCESS, when applied to a prefix S that denotes a subprogram, creates an access value
that designates the subprogram.

For an overloaded subprogram name S, S’ACCESS is overloaded on all access types designating
subprograms. The context must uniquely determine such a type. The access type determined may then
be used to identify the particular subprogram denoted by S. [Note: This use of context to resolve the
overloading of an attribute prefix is new to Ada 9X. It is not permitted in Ada 83 — see RM 4.1.4(3).]

For S’ACCESS, the scope level of S (see 8.2) must not be deeper than that of the resulting access type. S
must be subtype conformant (see 6.3.1) with the subprogram formal part and return subtype specified in
the access type definition. S must be a protected subprogram, if and only if the definition of the resulting
access type includes the reserved word protected. S must not be an abstract subprogram (see 6.1).

The reserved word all is used for dereferencing all access types. The ‘‘.all’’ may be omitted when used

3-14 5 June 1992 (version 4.6)

Ada 9X Declarations and Types Ada 9X Mapping Specification

as a prefix, or (for access-to-subprogram) followed by an actual parameter part. Any selected component
with a value of an access-to-constant type as prefix is constant. [Note: Other access values might provide
views of the same object; those views might be variable.]

When an access-to-subprogram value is dereferenced, the resulting subprogram is never a dispatching
subprogram.

3.10. Declarative Parts [originally 3.9]
The ordering requirement between basic declarative items and later declarative items is eliminated. The
occurrence of a body forces (see RM 13.1(6)) the determination of the representation of all types declared
prior to the body.

The syntax for declarative parts is modified as follows:

declarative_part ::= {declarative_item}

declarative_item ::=
basic_declaration | representation_clause | use_clause | body

body ::= proper_body | body_stub

proper_body ::=
subprogram_body | package_body | task_body | protected_body

5 June 1992 (version 4.6) 3-15

Ada 9X Mapping Specification Ada 9X Declarations and Types

3-2 5 June 1992 (version 4.6)

Ada 9X Names and Expressions Ada 9X Mapping Specification

4. Ada 9X Names and Expressions

4.1. Names

4.1.1. Indexed Components

4.1.2. Slices

4.1.3. Selected Components

4.1.4. Attributes

4.2. Literals

4.3. Aggregates

4.3.1. Record Aggregates
A record aggregate for a type must not be used in a place where any extension part of the type is private
(see 3.4.1).

A special form of record aggregate, an extension aggregate, may be used to specify a value for a tagged
derived type in terms of a value of its parent type, as follows:

record_aggregate ::=
aggregate -- as before

| extension_aggregate

extension_aggregate ::=
(expression with record_aggregate)

| (expression with null)

[Note: This feature replaces the concept of constructor conversions that appeared in earlier mapping
specifications.]

The derived type must be a record extension or null extension of the parent type. The expression must be
of the parent type. The nested record aggregate, if present, must specify a value for each discriminant and
each component of the record extension part of the derived type. If with null is specified, the derived
type must be a null extension of the parent type with all discriminants inherited from the parent type.

For the evaluation of an extension aggregate, the expression of the parent type and the expressions for the
components in the nested record aggregate are evaluated in an order based on the rules for normal record
aggregates (see RM 4.3.1 and AI-00189). [Note: This generally means in any order, except for nested
array aggregates or string literals whose bounds are determined by a discriminant.] A check is made that

5 June 1992 (version 4.6) 4-1

Ada 9X Mapping Specification Ada 9X Names and Expressions

the values specified by the aggregate for the parent part and each component of the extension part belong
to the corresponding parent or component subtype, CONSTRAINT_ERROR is raised if this check fails.

4.3.2. Array Aggregates
Paragraph 6 of RM 4.3.2, which deals with aggregates having both an others choice and other named
associations, is removed. The presence of other named associations has no effect on the legality of the
use of an others choice in an array aggregate. [Note: This is possible by stipulating that no implicit array
subtype conversion (see 4.6) takes place on an array aggregate with an others choice.]

4.4. Expressions
The restriction on the use of out parameters is eliminated. [Note: Prior to being assigned, out
parameters are essentially like variables declared without an explicit initialization.]

4.5. Operators and Expression Evaluation

4.5.1. Logical Operators and Short-circuit Control Forms

4.5.2. Relational Operators and Membership Tests
For a membership test of the form ‘‘X in S’’ where S is a subtype of type T, the type of X must cover or
be covered by T. The result is TRUE if and only if X satisfies the constraints associated with subtype S, if
any, and, if X is of a tagged class-wide type, the tag of X identifies a (specific) type covered by T.

[Note: If X is of a tagged class-wide type, and T is a specific type, then X in T asks whether X’TAG =
T’TAG, whereas X in T’CLASS asks whether X’TAG is the tag for T or any of its derivatives.]

4.5.3. Binary Adding Operators

4.5.4. Unary Adding Operators

4.5.5. Multiplying Operators
Corresponding to the Ada 83 operators on universal_real, universal_integer, and universal_fixed, in Ada
9X, the following additional operators appear in package STANDARD for the root numeric types:

function "*"(LEFT : root_real; RIGHT : root_integer)
return root_real;

function "*"(LEFT : root_integer; RIGHT : root_real)
return root_real;

function "/"(LEFT : root_real; RIGHT : root_integer)
return root_real;

The root_integer and root_real types also have the full set of operators defined in Ada 83 for integer and
real types, respectively. Note that, the above operators on root_integer and root_real are not predefined
for other numeric types.

4-2 5 June 1992 (version 4.6)

Ada 9X Names and Expressions Ada 9X Mapping Specification

As in Ada 83, any two fixed point types may be multiplied or divided. In addition, for Ada 9X, we allow
either of the operands to be of type universal_real.

function "*"(LEFT, RIGHT : any_fixed_or_universal_real)
return precise_fixed;

function "/"(LEFT, RIGHT : any_fixed_or_universal_real)
return precise_fixed;

Like the Ada 83 type universal_fixed, the type precise_fixed is a real type with no operators, and must be
converted before further use.

[Note: In response to the April ’92 DR meeting, we are investigating allowing multiply and divide for
fixed-point types to be used without explicit conversion of the result, where the type of the result can be
determined unambiguously from context. This would treat these fixed-fixed operations roughly the same
way that null or string literals are treated, requiring the result type of the multiply or divide to be
determined from context knowing only that it must be a fixed-point type. The simplest formulation is as
follows:

function "*"(LEFT, RIGHT : universal_fixed)
return universal_fixed;

function "/"(LEFT, RIGHT : universal_fixed)
return universal_fixed;

Universal fixed would cover all fixed point types (see 3.3.3 for definition of "cover"), but there would be
no predefined operators other than "*" and "/" that would operate on it directly. In this way, it would be
like a literal without any preference rule, requiring a specific fixed-point type to be provided by context to
use the result.]

4.5.6. Highest Precedence Operators
In accordance with AI-00868, exponentiation by an integer is equivalent to repeated multiplication, but
with arbitrary association of operands (that is, not necessarily left to right), followed by a final reciprocal
for the case of a real operand with a negative exponent.

[Note: Arbitrary association allows exponentiation by an integer to be performed using repeated squaring,
rather than strictly as a sequence of single multiplications.]

[Note: Section 4.5.7, Accuracy of Operations with Real Operands, is moved to Annex NM:ALL]

4.6. Type Conversions
This section defines rules that govern whether it is legal to convert from one type to another. In addition,
it specifies checks that are performed at run time as part of a type conversion. A type is convertible to a
second type if and only if it is legal to convert from the first type to the second, according to the rules in
this section.

In what follows, the ancestor of a specific type T or class-wide type T’CLASS is defined to be the type T
itself, or any type from which T is derived, directly or indirectly.

A conversion denotes a view of its operand. The resulting view is of the target subtype. For parameter
passing purposes, a conversion of a variable is a variable, a conversion of a constant is a constant, and a
conversion of a value is a value. The tag of a class-wide object or value is preserved through a series of
conversions.

5 June 1992 (version 4.6) 4-3

Ada 9X Mapping Specification Ada 9X Names and Expressions

Similar to Ada 83, a conversion between types is generally permitted if their root types share a common
ancestor. However, there are additional restrictions for tagged types, and additional allowances for
general access types.

The basic rules for conversions between tagged types are as follows:

• The target type must cover an ancestor of the operand type, or the operand type must cover
the target type;

• If only the latter case is true, then at run-time, a check is made that the target type covers an
ancestor of the specific type identified by the tag of the operand. CONSTRAINT_ERROR is
raised if this check fails.

In addition to conversions between access types with a common ancestor (which are allowed in Ada 83),
Ada 9X allows conversions to access-to-subprogram types and general access types:

• For conversion to an access-to-subprogram type, the operand’s designated subprogram
specification must be subtype conformant with that of the target type.

• It is illegal to convert from an access-to-constant type to an access-to-variable type.

• For conversion to a general access type, the operand and target designated types must be
convertible. If there is a run time tag check associated with converting from the operand
designated type to the target designated type, this check is performed if the operand is not
null. CONSTRAINT_ERROR is raised if this check fails.

• For conversion to a general access type, the target designated subtype constraints must
statically match those of the operand designated subtype, unless the target designated subtype
is an unconstrained subtype with discriminants. The same representation clauses and
pragmas must apply to both designated subtypes.

• For conversion to an anonymous access type (see 3.9), as part of a parameter association or
discriminant constraint, a check is made that the access value is not null.
CONSTRAINT_ERROR is raised if this check fails.

• For conversion of an access parameter (see 3.9) to a general access type, if the scope level of
the access parameter is deeper than that of the target type, then a check is made at run time
that the scope level of the designated object is no deeper than that of the target type.
CONSTRAINT_ERROR is raised if this check fails. [Implementation note: This implies that
the scope level must be passed in with an access parameter, in a manner similar to the
CONSTRAINED attribute.]

• For any other access type conversion, the scope level (see 8.2) of the operand type must not
be deeper than that of the target type.

[Note: Implicit type conversions are no longer involved with overload resolution. Instead, the formal
parameter type is the expected type, and the actual type must match the expected type according to the
operand matching rules (see 3.3.3). Any implicit conversion is applied after overload resolution (see
6.4.1).]

Implicit subtype conversions for arrays are generalized to apply in all circumstances where an applicable
constraint is present (see RM 4.3.2(4-8)), except for out and in out actual parameters (see 6.4.1).
However, an implicit subtype conversion is never applied to an array aggregate with an others choice
(see 4.3.2).

4-4 5 June 1992 (version 4.6)

Ada 9X Names and Expressions Ada 9X Mapping Specification

4.7. Qualified Expressions
The expected type of the operand of a qualified expression is that of the type mark.

4.8. Allocators
[Note: See 3.9.2 for a discussion of allocators.]

4.9. Static Expressions and Static Subtypes
Static expressions involving only the operators of the root numeric types are evaluated exactly. [Note:
This is equivalent to the Ada 83 rule on static universal expressions.]

The rules for static expressions and static subtypes are generalized to allow more kinds of compile-time-
known expressions to be used where static values are required, as follows:

• A basic operation may appear in a static expression.

• The scalar attributes of statically constrained objects or subtypes are static.

• The discriminants of statically constrained objects are static.

• The RANGE attribute of a statically-constrained array subtype or object is a static range.

• A type conversion is static if the type mark denotes a static subtype and the operand is a static
expression. No rounding is performed except on conversion from real to integer, in which
case, if the value is exactly between two integers, the result is rounded away from zero.

4.9.1. Statically Matching Constraints and Subtypes [new]
A constraint statically matches another constraint if both are static and equal, or both are non-static and
originate from the same subtype indication.

A subtype statically matches another subtype if both have the same base type, and both are unconstrained
or have statically matching constraints.

A discrete constraint is statically compatible with a subtype if it statically matches the constraint of the
subtype, or if both are static and the constraint is compatible with the subtype. In the case of a
discriminant used to define an array bound, the constraint of the discriminant’s subtype is also statically
compatible with the index subtype if both subtypes are static and no value of the discriminant could cause
a constraint error. [Note: This extra rule accommodates the possibility of a null array.]

[Note: Statically matching constraints and subtypes are the basis for parameter subtype conformance
checking (see 6.3.1).]

[Note: The section on Universal Expressions is removed. It is subsumed by 4.5.5 and 4.9.]

5 June 1992 (version 4.6) 4-5

Ada 9X Mapping Specification Ada 9X Names and Expressions

4-6 5 June 1992 (version 4.6)

Ada 9X Statements Ada 9X Mapping Specification

5. Ada 9X Statements

5.1. Simple and Compound Statements - Sequences of Statements

5.2. Assignment Statement
For an assignment statement whose left-hand side is of a specific type, the expected type of the right-hand
side is that same type. For an assignment statement whose left-hand side is of the class-wide or universal
type for a class, the expected type of the right-hand side is the root type of the class.

5.3. If Statements

5.4. Case Statements

5.5. Loop Statements

5.6. Block Statements

5.7. Exit Statements

5.8. Return Statements

5.9. Goto Statements

5 June 1992 (version 4.6) 5-1

Ada 9X Mapping Specification Ada 9X Statements

5-2 5 June 1992 (version 4.6)

Ada 9X Subprograms Ada 9X Mapping Specification

6. Ada 9X Subprograms

6.1. Subprogram Declarations
The syntax for subprogram declarations is revised to allow ‘‘is <>’’, which means that the subprogram is
abstract. The syntax for parameter specification is revised to allow for access parameters (see 3.9).

subprogram_declaration ::=
subprogram_specification [is <>];

parameter_specification ::=
identifier_list : mode type_mark [:= expression]

| identifier_list : access_definition [:= expression]

An abstract subprogram must not have a body. Only a primitive operation of a tagged type may be
declared abstract. An abstract subprogram may only be called with class-wide controlling operands (see
3.4.2).

If a primitive operation of a tagged type is abstract, then the type is an abstract type (see 3.4.2). When
deriving from an abstract type, the abstract operations must be overridden, either with non-abstract
declarations, or with another abstract subprogram declaration. [Note: Hence, a tagged type is only
abstract if one of its primitive operations is explicitly declared as abstract.]

A formal parameter specified by an access definition is an in parameter of an anonymous access type (see
3.9). Such a parameter is called an access parameter.

6.2. Formal Parameter Modes
Whether an implementation must pass a parameter by copy is determined as follows:

• A parameter must be passed by copy if its type is elementary, or is a private type whose full
type must be passed by copy.

• Otherwise, it is implementation dependent whether a parameter is passed by copy or by
reference. [Note: In Ada 83, a program was erroneous if its effect depended on the parameter
passing method chosen. In Ada 9X, such a program is non-portable.]

An out parameter is a variable that permits both reading and updating. If an out parameter is passed by
copy, then any subcomponent that is a discriminant, is of an access type, or has a default initial
expression, is copied in prior to the call. It is a bounded error to read a scalar out parameter, or any scalar
subcomponent of an out parameter that is not required to be copied in, prior to initializing it.

6.3. Subprogram Bodies
A renaming declaration may act as a body for a subprogram. The renaming must be of a subprogram that
is subtype conformant with the specification given in the renaming declaration (see 6.3.1).

[Note: In accordance with the April ’92 ISO WG9 meeting, we have dropped the proposal allowing a
generic instantiation to act as a body. Renaming may be used to accomplish the same goal, if necessary.]

5 June 1992 (version 4.6) 6-1

Ada 9X Mapping Specification Ada 9X Subprograms

6.3.1. Conformance Rules
Each subprogram has a calling convention, which is a language name (see 13.9). The default calling
convention of a subprogram with a normal Ada body is language ADA. This default may be overridden
using pragmas IMPORT, EXPORT, or LANGUAGE (see 13.9). The calling convention for a predefined
or intrinsic operation is language INTRINSIC. An intrinsic operation is an operation whose specification
is defined in Ada, but whose implementation may be incorporated directly into the compiler (that is, there
need be no explicit Ada body for the operation).

The subprogram specification conformance rules, as well as discriminant part conformance rules, are
relaxed to require only the static semantic equivalence defined below as ‘‘full conformance.’’

There are four levels of conformance in Ada 9X:

Type Conformance requires that two specifications have the same number of parameters (and both have a
result if either does) and at each parameter position corresponding parameters (and
results, if present) have the same (base) type, or in the case of access parameters (see
3.9), the same designated type.

Mode Conformance
requires type conformance and that the parameters at each corresponding position
have identical modes. For access parameters (see 3.9), the designated subtypes must
statically match.

Subtype Conformance
requires mode conformance. In addition:

• The subtypes of the parameters at each parameter position (and results, if
any) must statically match (see 4.9.1);

• The calling conventions must be the same;

• Neither calling convention can be INTRINSIC;

• If one is a protected subprogram or entry, then the other must be a
protected subprogram or entry, respectively (see 9.7).

Full Conformance requires subtype conformance and that the formal parameters at corresponding
positions have the same names and conforming default expressions (if any). Two
default expressions are said to conform if each primary, operator, or basic operation
within one expression has a corresponding primary, operator, or basic operation
within the other expression, and, in the case of a primary that is a name, they
(statically) denote the same entity.

6.3.2. Inline Expansion of Subprograms

6.4. Subprogram Calls

6.4.1. Parameter Associations
The rules for parameter associations are as follows:

• The type of the actual parameter must match the formal parameter, according to the operand
matching rules (see 3.3.3);

• The type of the actual parameter must be convertible to the type of the formal parameter (see

6-2 5 June 1992 (version 4.6)

Ada 9X Subprograms Ada 9X Mapping Specification

4.6);

• For an in or in out parameter that must be passed by copy (see 6.2) the value of the actual
parameter is converted (see 4.6) to the subtype of the formal parameter and assigned to it,
which may raise CONSTRAINT_ERROR.

• After a call that does not propagate an exception, for an in out or out parameter that must be
passed by copy, the value of the formal parameter is converted to the subtype of the actual
parameter and assigned to it, which may raise CONSTRAINT_ERROR.

• For an in parameter that may be passed by reference, the formal parameter is defined to be a
(read-only) conversion (see 4.6) of the actual parameter, to the subtype of the formal
parameter. This conversion may raise CONSTRAINT_ERROR.

• For an in out or out parameter that may be passed by reference, the value of the actual
parameter is checked to ensure that it satisfies the constraints of the subtype of the formal
parameter. CONSTRAINT_ERROR is raised if this check fails. The formal parameter is
defined to be an (updatable) view of the actual parameter. [Note: As in Ada 83, no constraint
check is performed on return for a parameter that may be passed by reference.]

As in Ada 83, for a parameter that may be passed by reference, it is implementation dependent whether
the value of the formal parameter (which is a view of the actual) is held in a local copy between the call
and the return. If an exception occurs, it is therefore implementation dependent whether the actual is
updated for such a parameter, when its mode is in out or out.

[Note: The rules for parameter associations apply to discriminant constraints as well, where all
discriminants are handled like formal in parameters that must be passed by copy. See 3.6.1 and 3.6.2.]

6.4.2. Default Parameters

6.5. Function Subprograms

6.6. Parameter and Result Type Profile - Overloading of Subprograms

6.7. Overloading of Operators
The equality operator "=" may be overloaded for any combination of parameter and result types. A
corresponding inequality operator "/=" is implicitly declared only if the result type is
STANDARD.BOOLEAN. An inequality operator "/=" may be explicitly declared if its result type is not
STANDARD.BOOLEAN.

5 June 1992 (version 4.6) 6-3

Ada 9X Mapping Specification Ada 9X Subprograms

6-2 5 June 1992 (version 4.6)

Ada 9X Packages Ada 9X Mapping Specification

7. Ada 9X Packages

7.1. Package Structure

7.2. Package Specifications and Declarations

7.3. Package Bodies

7.4. Private Type and Deferred Constant Declarations

7.4.1. Private Types
The syntax for a private type declaration is augmented to allow the specification of a tagged private type.

private_type_declaration ::=
type identifier [discriminant_part]
is [tagged] [limited] private;

A private type is a composite type (see 3.3) outside of the scope of the full type declaration. (In this
section a task or protected type declaration is considered a ‘‘full’’ type declaration.)

If a private type declaration has a discriminant part, then the full type declaration must be a composite or
derived type declaration with a fully conforming discriminant part (see 6.3.1).

If a private type declaration includes the modifier tagged, then the full type declaration must be tagged.

7.4.2. Private Extension [new]
The declaration of a private type extension of a tagged parent type is allowed in the visible part of a
package. A private extension is a tagged composite type, with a private extension part.

For each private extension declared in the visible part of a package, a corresponding full type declaration
must appear in the private part for a type derived (directly or indirectly) from the tagged parent type.
[Note: This allows the full type to be defined by deriving from a type produced by a generic instantiation,
or one or more intermediate derivations.]

Unless explicitly overridden within the visible part, the implementations of the primitive operations
inherited from the parent type of a private extension are determined by the full type declaration and the
other declarations in the private part. Unless a primitive operation of a tagged private type or private
extension is declared as abstract in the visible part, the full type must not be an abstract type. [Note:
These rules imply that although the specifications of the primitive operations of a private extension come
from the parent type identified in the private extension definition, the implementations come from the full
type. They also imply that a type is abstract only if some visible operation is explicitly declared as
abstract.]

5 June 1992 (version 4.6) 7-1

Ada 9X Mapping Specification Ada 9X Packages

Example of a private extension:

with BASIC_WINDOWS; -- defines tagged type ROOT_WINDOW
package EXTENDED_WINDOWS is

type LABELED_WINDOW(LENGTH : NATURAL) is
new BASIC_WINDOWS.ROOT_WINDOW with private;

. . .
private

type LABELED_WINDOW(LENGTH : NATURAL) is
new BASIC_WINDOWS.ROOT_WINDOW with

record
LABEL : STRING(1..LENGTH);
FONT : FONT_ID := 0;

end record;
end EXTENDED_WINDOWS;

7.4.3. Operations of a Private Type [originally 7.4.2]
[Note: As in Ada 83, the attribute T’CONSTRAINED of a private subtype T being true is not the same as
T being ‘‘constrained.’’ In particular, if the full subtype is an elementary type, T’CONSTRAINED is
always true, even if no constraints apply to the subtype. See RM 3.3(4) and RM 7.4.2(10).]

7.4.4. Deferred Constants [originally 7.4.3]
A deferred constant declaration, for a constant of any type, is allowed immediately within the visible part
of a package. The full constant declaration must appear immediately within the private part of the same
package. [Note: In Ada 83, deferred constants were restricted to being of a private type that is declared in
the same visible part (see RM 7.4(4)). We are relaxing this restriction.]

7.4.5. Limited Types [originally 7.4.4]
[Note: We are still studying the issue of returning a value of a limited type. This section is our initial
attempt to define the semantics of such an operation, as well as other issues relating to limited types.
Fundamentally, many of these issues revolve around the question: ‘‘what is the value of an object of a
limited type?’’ (We will grinningly ignore opinions that "objects of a limited type have no value.")]

The value of an inherently aliased (see 3.9.2) object of a limited type designates that object. [Note: This
rule is an adaptation of the Ada 83 rule for task types, and at least opens the possibility for lessening the
current strong distinction between task objects and tasks.] If a function returns a value of an inherently
aliased limited type, the result designates the same object designated by the value of the return expression.
If the object is local to the function, it is moved if necessary, so that the storage for the (moved) object is
not reclaimed and the object is not finalized (see 7.4.6) prior to the caller finishing with the returned
value.

It is a bounded error to return the value of an inherently aliased local object if the object cannot be moved.
Task objects and objects containing access discriminants cannot be moved. As a result of the bounded
error, PROGRAM_ERROR may be raised, or a value may be returned that designates a temporary object
of the same type that is local to the caller, which is reclaimed when the caller is finished with the returned
value. [Note: This addresses the issue of returning a task outside of the scope of its master.]

[Note: It is interesting to note that in Ada 83, an object containing a task subcomponent is considered
implicitly referenced as long as the task is not terminated (see RM 4.8(7)), implying that the task might

7-2 5 June 1992 (version 4.6)

Ada 9X Packages Ada 9X Mapping Specification

have access to the enclosing object, and that the object is inherently aliased. However, this might appear
inconsistent with the note in RM 13.10.1(8) saying that UNCHECKED_DEALLOCATION of a task
object has no effect on the associated task. Objects containing protected subcomponents will have similar
considerations, particularly when the protected subcomponent is used to provide a relatively long-lived
lock on the enclosing object. We will be studying these issues further during the revision.]

7.4.6. Controlled Types [new]
A limited tagged type CONTROLLED is defined in package SYSTEM. Any type derived from this type,
directly or indirectly, is called a controlled type. The tagged type CONTROLLED has two primitive,
dispatching operations, INITIALIZE and FINALIZE, with specifications as follows:

procedure INITIALIZE(OBJECT : in out CONTROLLED);

procedure FINALIZE(OBJECT : in out CONTROLLED);

These operations have null implementations for the type CONTROLLED. They may be overridden with
new implementations for any type derived from CONTROLLED.

After a controlled object (including a subcomponent of another object) is created and has been default
initialized, the operation INITIALIZE is applied to it as the last step in its initialization. If a controlled
object has controlled subcomponents, the INITIALIZE operation is applied to the controlled
subcomponents prior to applying it to the enclosing object. [Note: This allows the INITIALIZE operation
for a composite object to refer to its subcomponents knowing they have been properly initialized.] For an
object created by an allocator, any subcomponent task activations follow all INITIALIZE operations.

Prior to reclaiming the storage for a controlled object (including a subcomponent of another object), the
operation FINALIZE is applied to it. [Note: This also applies to objects whose storage is reclaimed by
UNCHECKED_DEALLOCATION or automatic storage reclamation.] If a controlled object has
controlled subcomponents, the FINALIZE operation is applied to the enclosing object prior to applying it
to its controlled subcomponents. [Note: This allows the FINALIZE operation for a composite object to
refer to its subcomponents prior to their being finalized.]

Upon leaving a declare block, or a procedure, entry, or task body, the FINALIZE operation is applied to
all local controlled objects, including those in local access collections that have not already been finalized
by UNCHECKED_DEALLOCATION or automatic storage reclamation. For declared objects and their
subcomponents, the FINALIZE operations are applied in the reverse of the order of the INITIALIZE
operations. The FINALIZE operations are applied after waiting for any local tasks to terminate. [Note:
Like task waiting, the FINALIZE operations are performed whether the scope is left by reaching the last
statement, a return, an exit, a goto, or an abort or asynchronous transfer.]

In the case of a function that returns the value of a local controlled object or local object with a controlled
subcomponent (see 7.4.5), the FINALIZE operation(s) on this object (and possibly others in the same
scope) is (are) deferred until the caller of the function is finished with the returned value. For all other
functions, the FINALIZE operations are applied upon leaving the function body, as with a procedure.

Immediately prior to program termination, FINALIZE operations are applied to library-level controlled
objects (including those in library-level access collections, except those already finalized). This occurs
after waiting for library-level tasks to terminate. [Note: We are considering a pragma that would apply to
a controlled type that would suppress FINALIZE operations for library-level objects of the type upon

5 June 1992 (version 4.6) 7-3

Ada 9X Mapping Specification Ada 9X Packages

program termination. This would be useful for types whose finalization actions consist of simply
reclaiming global heap storage, when this is already provided automatically by the environment upon
program termination.]

If any FINALIZE operation propagates an exception, then after completing any other FINALIZE
operations due to be performed, PROGRAM_ERROR is raised at the point where normal execution
would have continued. For example, upon leaving a block due to a goto statement, the
PROGRAM_ERROR would be raised at the point of the target statement named by the label.

While performing an INITIALIZE or FINALIZE operation of a controlled type, abort and asynchronous
transfer of control are deferred. [Note: This ensures that an object is never partially initialized when
finalized, or partially finalized when reclaimed. This also allows, for example, the result of an allocator
performed in an INITIALIZE operation to be stored in an access object without being interrupted in the
middle of the assignment statement, ensuring that the associated storage can be fully reclaimed by the
FINALIZE operation.]

[Note: Because CONTROLLED is a library-level type, all controlled types will also be library-level types
(see 3.4.1). This ensures that the FINALIZE operations may be applied without providing any ‘‘display’’
or ‘‘static-link.’’ This simplifies finalization as a result of automatic storage reclamation, abort, and
asynchronous transfer of control.]

7.5. Example of a Table Management Package

7.6. Example of a Text Handling Package

7-4 5 June 1992 (version 4.6)

Ada 9X Mapping Specification Ada 9X Packages

7-2 5 June 1992 (version 4.6)

Ada 9X Visibility Rules Ada 9X Mapping Specification

8. Ada 9X Visibility Rules

8.1. Declarative Region
A protected record unit is a declarative region.

8.2. Scope of Declarations
Every declaration, every entity declared by a declaration and every object has a scope level, defined as
follows:

[Note: We intend to simplify this discussion as part of the revision process.]

All declarations that are local to (i.e. declared immediately within) a particular declarative region have the
same scope level. The scope level of a declaration that is local to a package is the same as that of the
package. The scope level of a declaration that is local to a subprogram, task unit, protected unit, or block
statement is deeper than that of the program unit or block statement. The scope level of a declaration that
is local to a generic declaration is defined as for the instance. The scope level of a declaration that is local
to a generic body is deeper than that of the generic declaration. The scope level of package STANDARD
is called the library-level scope, and entities with this scope level are called library-level entities.

The scope level of a derived access type is that of the parent type. The scope level of an access parameter
type is that of the corresponding access discriminant or parameter (see 3.6.1 and 3.9). The scope level of
any other entity declared by a declaration is that of the declaration.

The scope level of an object designated by an access parameter (see 3.9) is that of the object designated
by the actual expression initializing the access parameter. The scope level of an object designated by an
access discriminant (see 3.6.1) is that of the discriminated object. The scope level of an object designated
by any other access value is that of the access type. The scope level of a subcomponent of an object is
that of the object. The scope level of a protected operation of an object is that of the object.

On a subprogram call, the scope level of a parameter or result of the subprogram being called is deeper
than any object declared by or accessible to the caller prior to the call. [Note: This definition ensures that
there is no scope check as part of initializing an access parameter (see 3.9 and 4.6). It also ensures that an
access discriminant of the result of a function call cannot be used to initialize an access discriminant of an
object declared by the caller (see 3.6.1 and 4.6).]

[Notes:

A package does not introduce a deeper scope level. Other program units do.

In order to prevent dangling pointers of various kinds, we have introduced certain scope checks, based on
the above definition of scope levels. There are scope checks on derived tagged type declarations (see
3.4.1), on the ACCESS attribute (see 3.9.2), and on type conversion of access types (see 4.6). Most scope
checks are done at compile time; the only exception is for conversion of an access parameter (see 3.9) to a
general access type (see 4.6).]

5 June 1992 (version 4.6) 8-1

Ada 9X Mapping Specification Ada 9X Visibility Rules

8.3. Visibility
The declaration of a protected operation of a given protected record type is visible by selection at the
place of the selector after the dot of a selected component whose prefix is appropriate for the protected
record type. (See RM 8.3(7-12).)

For overloadable entities, the definition of homograph is revised as follows:

Two declarations of overloadable entities are homographs if they have the same identifier, operator
symbol, or character literal, the same number of parameters and results, and if, according to the operand
matching rules (see 3.3.3):

• the result types (if any) could both match the same specific type; and

• for each parameter position, a single specific type could match both formal parameters.
[Note: This rule makes two declarations homographs if they are unresolvable even in a context that
determines all specific operand and result types.]

8.4. Use Clauses
For a child library unit (see 10.1) referenced in a with clause, the declaration of its simple name, which
logically occurs within the child part of its parent, is made directly visible by a use clause for the parent
package.

[Note: In response to the April ’92 ISO WG9 meeting, we are proposing two new kinds of use clauses, to
address the visibility of primitive operators and the accessibility of private declarations of an ancestor
library unit.] For Ada 9X, there are two new kinds of use clauses:

use_clause ::=
... -- as in Ada 83

| use type type_mark {, type_mark};
| use private ancestor_library_package_name

{, ancestor_library_package_name};

A type-based use clause is one introduced by the reserved words use type. A primitive operator of a
type is a primitive operation of a type whose designator is an operator symbol. A type-based use clause
makes directly visible each primitive operator of the type(s) determined by the type_mark(s), except
within the immediate scope of a homograph of the primitive operator.

A use clause introduced by the reserved words use private makes the private declarations of an ancestor
library unit package directly accessible within a child library unit (see 10.1). Outside the scope of such a
use-private clause, it is illegal in a child library unit to reference a declaration appearing within the private
part of an ancestor library unit package. A use-private clause has no affect on overload resolution; the
check for reference to private declarations is performed after overload resolution. [Note: This approach is
designed to avoid ‘‘Beaujolais’’ effects.]

8.5. Renaming Declarations
[Note: A renaming declaration may act as a body for a subprogram. See 6.3.]

8-2 5 June 1992 (version 4.6)

Ada 9X Visibility Rules Ada 9X Mapping Specification

8.6. The Package STANDARD

8.7. The Context of Overload Resolution
Rather than a preference rule against implicit conversion, as defined in RM 4.6(15), in Ada 9X there is a
preference for the primitive operators of the root numeric types root_integer and root_real. The rule is as
follows:

• In a given context, if two legal interpretations differ only in that one is for a primitive
operator of the type root_integer or root_real, and the other is for a corresponding primitive
operator for another numeric type, the interpretation using the primitive operator of the root
numeric type is preferred.

• For an innermost complete context (see RM 8.7(3)), if there is exactly one overall legal
interpretation where each constituent’s interpretation is the same as or preferred (in the above
sense) over those in all other overall legal interpretations, then that one overall legal
interpretation is chosen.

[Note: It is the intent that this preference rule is more locally enforceable than that of RM 4.6(15). It
should also minimize interpretation shifts due to the addition or removal of a use clause (the so called
Beaujolais effect).]

5 June 1992 (version 4.6) 8-3

Ada 9X Mapping Specification Ada 9X Visibility Rules

8-2 5 June 1992 (version 4.6)

Ada 9X Tasks and Synchronization Ada 9X Mapping Specification

9. Ada 9X Tasks and Synchronization

9.1. Task Specifications and Task Bodies
A discriminant part is allowed in a task type specification. The discriminants may be referenced within
the specification and body of the task using the simple name of the discriminant. In a task type
specification, the simple name of a discriminant denotes the discriminant of the task object being
elaborated. In a task body, the simple name of a discriminant denotes the discriminant of the task object
designating the task currently executing the body.

[Note: As with any discriminated type, the discriminants may also be referenced as a selected component
of a task object (see RM 4.1.3(4,5)).]

task_specification ::=
task [type] identifier [discriminant_part] [is
{entry_declaration}
{representation_clause}

[private
{entry_declaration}
{representation_clause}]

end [task_simple_name]]

The first list of entry declarations of a task specification is called the visible part of the task specification.
The optional list of entry declarations after the reserved word private is called the private part of the
task specification. An entry declared in the private part is not visible outside the task unit.

[Note: The task private part has been retained pending further study and review, to be consistent with
protected types and requeue.]

9.2. Task Types and Task Objects
There is no limitation on the use of an out parameter of a task type, since there are no remaining
limitations associated with out parameters of a limited type (see 6.2). As in Ada 83, for all parameter
modes, if an actual parameter designates a task, the associated formal parameter designates the same task;
the same holds for a subcomponent of a parameter (RM 9.2(2)).

Expressions appearing within representation clauses and pragmas in a task specification are reevaluated
for each object of the task type.

Analogous to tagged types (see 3.4.1) a class-wide type SYSTEM.TASK_CLASS is defined for the task
class. By definition, all task types are covered by SYSTEM.TASK_CLASS. SYSTEM.TASK_CLASS
is used for the explicit definition of class-wide operations on tasks, such as dynamic priority setting
operations (see the Real-Time Systems Annex).

9.3. Task Execution - Task Activation

5 June 1992 (version 4.6) 9-1

Ada 9X Mapping Specification Ada 9X Tasks and Synchronization

9.4. Task Dependence - Termination of Tasks

9.5. Protected Specifications and Protected Bodies [new]
[Note: We have adopted the terms ‘‘protected type’’ and ‘‘protected object’’ rather than protected record
type or object, since protected types are not considered record types.]

A protected unit consists of a protected specification and a protected body. A protected specification that
starts with the reserved words protected type and an identifier declares a protected type and an
unconstrained subtype. The identifier is the name of the subtype.

A protected specification without the reserved word type defines a single protected object. A protected
specification with this form of specification is equivalent to the declaration of an anonymous protected
type immediately followed by the declaration of an object of the protected type. The protected unit
identifier names the object. In the remainder of this chapter, explanations are given in terms of protected
type declarations. The corresponding explanations for single protected object declarations follow from
the stated equivalence.

The value of an object of a protected type designates the protected object, having protected operations and
protected components. Each protected specification must have a corresponding protected body. Each
protected operation must have a corresponding body; the rules are similar to those for Ada 83 subprogram
bodies. The execution of the protected operations are specified by the protected operation bodies given in
the body of the protected unit.

protected_declaration ::= protected_specification;

protected_specification ::=
protected [type] identifier [discriminant_part] is
{ protected_operation_declaration }
private
{ protected_operation_declaration }
record
component_list

end [protected_simple_name]

protected_operation_declaration ::=
subprogram_declaration

| entry_declaration

protected_body ::=
protected body protected_simple_name is

{ protected_operation_item }
end [protected_simple_name];

protected_operation_item ::= subprogram_declaration
| subprogram_body
| entry_body

9-2 5 June 1992 (version 4.6)

Ada 9X Tasks and Synchronization Ada 9X Mapping Specification

9.6. Protected Types and Protected Objects [new]
A protected type is a limited composite type. A protected object is an object whose type is a protected
type.

For all parameter modes, if an actual parameter is a protected object, the associated formal parameter
denotes the same protected object; the same holds for a subcomponent of a parameter.

The first list of protected operation declarations of a protected specification is called the visible part of the
protected specification. The declarations and component list that appear after the reserved word private
make up the private part of the protected specification.

The discriminants and the protected operations declared in the visible part of the protected specification
are visible by selection outside the protected unit. The non-discriminant data components of a protected
object are only visible within the body of the protected unit. They refer to components of the protected
object passed as an implicit parameter (see 9.7 below).

Expressions appearing within pragmas and default expressions in a protected specification are reevaluated
for each object of the protected type.

[Note: As for other discriminated types, the discriminants of a protected object may be named with
selected component notation anywhere the object may be named.]

Example of a Protected Type:
protected type COUNTING_SEMAPHORE(INITIAL_COUNT : INTEGER := 1) is
-- A Counting Semaphore,
-- Acquire = ‘‘P’’ operation
-- Release = ‘‘V’’ operation
function COUNT return INTEGER; -- Current count
procedure RELEASE; -- Release a resource
entry ACQUIRE; -- Acquire a resource, suspend if none

private record
CURRENT_COUNT : INTEGER := INITIAL_COUNT;
-- Count of available resources, default initial value is 1;
-- May be negative to represent being in ‘‘debt.’’

end COUNTING_SEMAPHORE;

protected body COUNTING_SEMAPHORE is
function COUNT return INTEGER is

-- Return current count of available resources
begin

return CURRENT_COUNT;
end COUNT;

procedure RELEASE is
-- Release a resource for acquisition by another caller

begin
-- Increment count of available resources
CURRENT_COUNT := CURRENT_COUNT + 1;

end RELEASE;

entry ACQUIRE when CURRENT_COUNT > 0 is
-- Acquire a resource when some are available;
-- Suspend if none are available.

begin
-- Decrement count of available resources

CURRENT_COUNT := CURRENT_COUNT - 1;
end ACQUIRE;

end COUNTING_SEMAPHORE;

5 June 1992 (version 4.6) 9-3

Ada 9X Mapping Specification Ada 9X Tasks and Synchronization

9.7. Protected Operations, Entry Calls, and Accept Statements [originally 9.5]
Protected objects may have protected operations that are functions, procedures, or entries. [Note: As in
Ada 83, a task may only have entries.]

Within a protected or task unit, the name of a protected operation is the protected operation’s simple
name. Outside a protected or task unit, the name of a protected operation declared in the visible part has
the form of a selected component. The prefix must be appropriate for (see RM 4.1(6)) the protected or
task type that declares the operation.

The body of a protected unit may contain function, procedure, and entry bodies corresponding to the
operations declared in the protected specification. In addition, the body of a protected unit may contain
declarations and bodies for local subprograms. These are not visible outside the protected unit.

entry_body ::=
entry identifier
[(for identifier in discrete_range)] [formal_part]
when condition

[is
[declarative_part]
begin
sequence_of_statements

[exception_handler_part]
end [entry_simple_name]];

An entry body specifies a barrier condition for an entry after the reserved word when, and optionally
specifies the execution of an operation to be associated with the entry. If the entry is a family, then the
name of the family index is provided using the iterator syntax for identifier in discrete_range.

The barrier condition is an expression of a boolean type; when the barrier evaluates to TRUE, the entry
body may be executed. The barrier may not reference any formal parameters to the entry, but it may
reference anything else visible, including the entry family index, the components (including
discriminants) of the protected object, the COUNT attribute of an entry of the protected object, or data
global to the protected unit.

[Note: The restriction against referencing the formal parameters within a barrier expression ensures that
all calls in the same entry queue see the same barrier value.]

A protected operation takes a protected object as an implicit parameter. This parameter has mode in for
protected functions and mode in out for protected procedures and entries.

A protected action is a synchronized operation on a protected object. A call on a protected operation
from outside the protected unit is a protected action. Prior to beginning the protected action, the operation
name and the actual parameters are evaluated. A protected action is synchronized with other protected
actions on the same protected object, as follows:

• No two protected actions on the same protected object may proceed concurrently, unless both
are the result of function calls.

• As the first step for an action that results from an entry call, the barrier condition is evaluated.
If it yields FALSE, the call is queued, and does not proceed further until the barrier is
reevaluated and no longer yields FALSE.

• As the final step of a protected action that is not the result of a function call, if any calls are

9-4 5 June 1992 (version 4.6)

Ada 9X Tasks and Synchronization Ada 9X Mapping Specification

queued, the barrier conditions are reevaluated. If the barrier of an entry with a queued call no
longer evaluates to FALSE, one call on such a queue is selected as the next protected action
to be performed on the protected object. If more than one call is eligible, an implementation-
defined rule is used to select among them.

The process of reevaluating the barrier conditions to select the next action is called servicing the entry
queues. By default, the calls on an entry queue are serviced in order of arrival. Other orders may be
specified by a language-defined or implementation-defined pragma (see RT:QUEUE-POLICY:SECT).
The language does not specify which task services the entry queues, and executes the entry body of the
selected action.

If the evaluation of a barrier condition propagates an exception, PROGRAM_ERROR is propagated to all
callers currently on any entry queue of the protected object.

An implementation need not reevaluate a barrier condition if its associated queue is empty, or if the
evaluation of a prior barrier allows a call to be selected. A barrier condition also need not be reevaluated
if the variables referenced by it were not altered by a protected action on the protected object since the
last evaluation of the barrier. [Note: These rules allow certain simplifications and optimizations in the
implementation. The second rule implies that barrier conditions should not reference variables altered
outside of the protected unit.]

The value of the COUNT attribute of an entry of a protected object is the number of calls in its entry
queue. The COUNT attribute is only available within the body of the protected unit.

When an entry call is cancelled (see 9.9.2), the value of the COUNT attribute will still include this call
until either it is removed from the queue, or the call is selected. If a cancelled call is selected before it is
removed from the queue, the call will be ignored.

Removing a cancelled call from its queue is a protected action, and hence cannot occur during any other
protected action. Upon completing the removal, the entry queues whose barriers depend on the COUNT
attribute are serviced.

A protected action may include a call on a protected subprogram where the target object is identified
implicitly to be the current protected object. In this case, a new protected action is not started; instead, the
call is performed as part of the current action. [Note: the parameter mode of the implicit protected object
parameter precludes a protected function from calling a protected procedure in this way.]

A protected action may include a call on a protected subprogram where the protected object is specified
as the prefix. In this case, a new protected action is performed on the specified protected object, as
described above.

The following are defined to be potentially suspending operations:

• a select statement;

• an accept statement;

• an entry call;

• a delay statement;

• a task creation;

5 June 1992 (version 4.6) 9-5

Ada 9X Mapping Specification Ada 9X Tasks and Synchronization

• an abort statement;

• a call on a subprogram in a language-defined I/O package;

• a call on an implementation-defined subprogram that is defined to potentially suspend the
calling task.

It is a bounded error for a protected action to directly or indirectly perform a potentially suspending
operation. It is also a bounded error for a protected action on a protected object to call, directly or
indirectly, a protected subprogram with a prefix identifying an object that is the same protected object.

In both cases, the bounded error may eventually result in deadlock, raise PROGRAM_ERROR
(immediately or as soon as the error is detected), or go undetected. To ensure the error is bounded, an
implementation that does not detect all such errors, and allows a second protected action to be improperly
performed in the middle of the current protected action, must assume that the state of the protected object
is updated by any operation that might lead to such an undetected error (such as a call out from the
protected type).

[Note: Some of the above ‘‘potentially suspending’’ operations are not directly suspending. However,
they are still treated as errors because requiring them to be supported from within a protected operation
was felt to impose an undesirable implementation burden.]

9.7.1. Requeue Statements [new]
A requeue statement may be used to complete the execution of an entry body or accept statement, and at
the same time commence a new entry call. In effect, the original entry call is being redirected to a new
entry.

requeue_statement ::= requeue entry_name [with abort];

A requeue statement is only allowed within an entry body or an accept statement, and is associated with
the innermost such construct; a requeue statement is not allowed within a program unit body nested
within this entry body or accept statement. A requeue within an entry body may only be to an entry of a
protected object. A requeue within an accept statement may be to an entry of a task or protected object.

The entry named by the requeue statement must either have no parameters, or be subtype conformant (see
6.3.1) with the parameter profile of the innermost enclosing entry body or accept statement. [Note: The
presence or absence of a family index plays no part in the conformance check. The family index, if any,
is considered part of the entry name, not one of its parameters.]

The execution of a requeue statement proceeds by first evaluating the entry name, including any prefix
identifying the target task or protected object. If the target object is identified implicitly as being the
current task or protected object, the call is simply added to that entry’s queue, to be selected later when
the entry is serviced.

If the target object is specified explicitly in the entry name, then the requeue is handled like a normal
entry call up until the point when the requeued call is complete or queued.

Having queued or completed the requeued call, the entry body or accept statement containing the requeue
statement is exited.

A requeued entry’s formal parameters are handled as follows:

9-6 5 June 1992 (version 4.6)

Ada 9X Tasks and Synchronization Ada 9X Mapping Specification

• If the new entry has formal parameters, then the values of these formal parameters will be
initialized from the values of the corresponding formal parameters of the current entry at the
time of the requeue.

• If the new entry does not have formal parameters, then the values of the formal parameters of
mode in out or out of the current entry that were passed by copy are retained for later copy
back and constraint check after completing the new entry call.

[Note: This treatment of formal parameters as part of a requeue will normally not require any special
action at run-time, since the parameters to an entry call will normally be kept in a parameter block
allocated by the original caller.]

If the requeue statement includes the reserved words with abort then abort is not deferred while the task
is waiting on the new entry queue. Otherwise, abort remains deferred during the requeuing. See 9.12 for
a further discussion of abort.

9.8. Delay Statements, Duration, and Time [originally 9.6]
The syntax for the delay statement is extended as follows:

delay_statement ::= delay until simple_expression;
| delay simple_expression;

The first form of the delay statement delays the task until the specified time is reached. The type of the
time expression must be either CALENDAR.TIME, or else some time type as allowed by Annex
RT:ALL. If the time has already passed, the task is not suspended.

The second form of the delay statement delays the task for the specified duration. The type of the
duration expression must be STANDARD.DURATION. The task is not suspended if the duration is less
than or equal to zero.

[Note: Even if the task is not suspended, a delay statement is always considered a synchronization point
for abort (see RM 9.10(6)).]

9.9. Select Statements [originally 9.7]
There are four forms of select statements. The first three are as in Ada 83. The last one provides
asynchronous transfer of control, triggered by the completion of an entry call or the expiration of a delay
(see 9.9.4).

select_statement ::= selective_wait
| conditional_entry_call | timed_entry_call
| asynchronous_select

9.9.1. Selective Wait [originally 9.7.1]
[Note: Having dropped multi-way entry call and iterators for select alternatives, the selective wait
statement is back to its Ada 83 form (and name).]

5 June 1992 (version 4.6) 9-7

Ada 9X Mapping Specification Ada 9X Tasks and Synchronization

9.9.2. Conditional Entry Calls [originally 9.7.2]

9.9.3. Timed Entry Calls [originally 9.7.3]

9.9.4. Asynchronous Transfer of Control [new]
An asynchronous select statement provides asynchronous transfer of control upon completion of an entry
call or the expiration of a delay.

asynchronous_select ::=
select
triggering_statement [sequence_of_statements]

then abort
abortable_part

end select;

triggering_statement ::= entry_call | delay_statement

abortable_part ::= sequence_of_statements

A task performing a delay statement is queued abortably until the delay expires. A task waiting on an
entry queue is queued abortably, unless requeued without allowing abort.

[Note: The detailed semantics given below are still under study. The general model proposed is that the
sequence of statements following the triggering statement is executed like a ‘‘software interrupt handler’’
prior to completing the finalization actions associated with the abortable part, and prior to performing the
asynchronous transfer of control to the end of the select statement.]

For the execution of an asynchronous select, the triggering statement is attempted. If the statement
completes without the task being queued abortably, then the sequence of statements following the
triggering statement is executed.

If the task is queued abortably prior to completion of the triggering statement, then the abortable part
begins execution. Thereafter:

• If the abortable part completes prior to the completion of the triggering statement, the
triggering statement is aborted. If the triggering statement nevertheless completes, the
sequence of statements following the triggering statement is executed. If the triggering
statement is aborted prior to completion, the sequence of statements following the triggering
statement is not executed.

• If the triggering statement completes prior to the completion of the abortable part, then the
sequence of statements of the abortable part is aborted, and the sequence of statements
following the triggering statement is executed. Any finalization actions associated with the
abortable part are postponed until after executing the sequence of statements following the
triggering statement.

See 9.12 for a discussion of the effect of aborting a sequence of statements.

9-8 5 June 1992 (version 4.6)

Ada 9X Tasks and Synchronization Ada 9X Mapping Specification

Example of a main command loop for a command interpreter:

loop
select

TERMINAL.WAIT_FOR_INTERRUPT;
PUT_LINE("Interrupted");

then abort
-- This will be abandoned upon terminal interrupt
PUT_LINE("-> ");
GET_LINE(COMMAND, LAST);
PROCESS_COMMAND(COMMAND(1..LAST));

end select;
end loop;

Example of a time-limited calculation:

select
delay 5.0;
PUT_LINE("Calculation does not converge");

then abort
-- This calculation should finish in 5.0 seconds;
-- if not, it is assumed to diverge.
HORRIBLY_COMPLICATED_RECURSIVE_FUNCTION(X, Y);

end select;

9.10. Priorities [originally 9.8]
All discussion of priorities is deferred to Annex RT:ALL.

9.11. Task and Entry Attributes [originally 9.9]

9.12. Abort of a Task; Abort of a Sequence of Statements [originally 9.10]
The abort statement allows an entire task to be aborted. This renders the task uncallable (see RM
9.10(7)). The asynchronous select statement (9.9.4) allows a sequence of statements to be aborted.

Any task dependent on a task being aborted, or dependent on a master within a sequence of statements
being aborted, is itself aborted. TASKING_ERROR is raised if a subsequent attempt is made to create a
new task dependent on an aborted task or master.

Abort is deferred while a task is performing a protected subprogram or entry call, except while the task is
queued on an entry queue with abort allowed.

Once abort is no longer deferred, the abort propagates out of the frame in which the task is executing. If
the task as a whole is aborted, the abort propagates until the task completes. If a sequence of statements is
aborted, the abort propagates until the sequence of statements is completed.

[Note: Annex RT:ALL specifies that abort must be immediate, once no longer deferred, for
implementations conforming to the Real-Time Systems Annex.]

5 June 1992 (version 4.6) 9-9

Ada 9X Mapping Specification Ada 9X Tasks and Synchronization

9.13. Shared variables [originally 9.11]
As in Ada 83, two tasks may communicate through variables visible to both tasks. However, it is
erroneous to perform an update operation on a shared variable when any other operation on the shared
variable might be performed. To ensure proper ordering between operations on shared variables, tasks
must synchronize (for example, through the use of entry calls).

In Annex SP:ALL, additional pragmas are provided for identifying variables that require atomic or direct
reading and writing.

[Note: A more formal memory model will be provided at a later date.]

9.14. Example of Tasking and Synchronization [originally 9.12]

9-10 5 June 1992 (version 4.6)

Ada 9X Program Structure and Compilation Issues Ada 9X Mapping Specification

10. Ada 9X Program Structure and Compilation Issues

10.1. Compilation Units - Library Units
Each library unit package (that is not an instantiation) must have a separate body. [Note: This eliminates
several anomalies with the current handling of implicit trivial package bodies. This is not strictly upward-
compatible. The work-around is to add a null package body to the end of a compilation containing a
library package that does not need a body.]

A library unit is either a root library unit or a child library unit. A child library unit must have a library
unit package as its parent library unit. The name of a child library unit is in the form of an expanded
name (RM 4.1.3), with the prefix being the name of the parent library unit, and the selector being the
identifier for the child library unit.

The syntax for subprogram_declaration, package_declaration, generic_declaration, generic_instantiation,
subprogram_body, and package_body will be revised to allow expanded name syntax for the name
introduced by the declaration:

program_unit_name ::= [parent_library_unit_package_name.]identifier

An expanded name is allowed in a program unit definition only if the unit is a library unit.

A child library unit is either a visible child or a private child of its parent package. A private child is not
visible outside the tree of library units rooted at its parent library unit.

The syntax for compilation_unit and library_unit is revised as follows:

compilation_unit ::=
context_clause [private] library_unit

| context_clause secondary_unit

A private library unit is marked using the reserved word private.

[Note: The proposal for library unit renaming has been deleted in accordance with the April ’92 ISO WG9
meeting.]

In addition to the visible part and private part of a package, a library unit package also has an implicit
child part where the declaration of a child unit is logically considered to occur when the child unit itself is
compiled, or when the child unit is referenced in a with clause. The child part implicitly occurs at the end
of the package specification, following the visible part and the private part (if any).

[Note: The role played by a parent package toward its child library units is analogous to the role played by
package STANDARD to the root library units. In other words, root library units may be considered child
units of package STANDARD. The specification of a parent package has no compilation dependence on
its child units. The body of a parent package depends on a child unit only if the child is mentioned in a
with clause applicable to the body.]

In the visible part of a visible child, the private declarations of the parent are not visible (neither directly
nor by selection). However in the visible part of a private child, and in the private part and body of any
child package, such declarations are directly visible. However, it is illegal to reference such declarations
except within the scope of a use-private clause (see 8.4) that specifies the parent library unit’s name.

5 June 1992 (version 4.6) 10-1

Ada 9X Mapping Specification Ada 9X Program Structure and Compilation Issues

Note: The model whereby a child appears in the child part of its parent when compiled or referenced in a
with clause has the following ramifications:

• The restrictions on ‘‘early’’ use of a private type (RM 7.4.1(4)) or a deferred constant (RM
7.4.3(2)) do not apply to uses in child units, because they follow the full declaration.

• Visible child subprograms are not derivable subprograms, because they are not declared
within the same list of declarations as the type.

• When the parent package is ‘‘used’’ the simple names of the ‘‘with’’ed child units are
directly visible (see 8.4).

• When a parent body ‘‘with’’s its own child, the simple name of the child is directly visible,
and the parent package body must not include a declaration of a homograph of the child unit
immediately within the declarative part of the body (RM 8.3(17)).

End of note.

Within a single program the expanded name of each program unit that is a compilation unit must be
unique. Uniqueness of the expanded name must be enforced prior to execution of the program.

Example of library unit package and child library units:
package OS is

-- Parent package defines types used throughout OS
type FILE_DESCRIPTOR is private;

private
type FILE_DESCRIPTOR is new INTEGER;

end OS;

procedure OS.INTERPRET(COMMAND : STRING);
-- Pass a single string to the OS command interpreter

package OS.EXCEPTIONS is
-- Define exceptions used throughout OS

FILE_DESCRIPTOR_ERROR,
FILE_NAME_ERROR,
PERMISSION_ERROR : exception;

end OS.EXCEPTIONS;

with OS.EXCEPTIONS;
package OS.FILE_MANAGER is

-- Define OS file operations
type FILE_MODE is (READ_ONLY, WRITE_ONLY, READ_WRITE);

function OPEN(
NAME : STRING;
MODE : FILE_MODE

) return OS.FILE_DESCRIPTOR;

procedure CLOSE(FILE : in OS.FILE_DESCRIPTOR);

-- etc...
end OS.FILE_MANAGER;

10.1.1. Context Clauses - With Clauses
A with clause may reference a child library unit. This necessitates an expanded name notation rather than
a simple name notation in a context clause.

with_clause ::= with library_unit_name {, library_unit_name};

The expanded name used in a with clause must be a full expanded name of the library unit starting with a

10-2 5 June 1992 (version 4.6)

Ada 9X Program Structure and Compilation Issues Ada 9X Mapping Specification

root library unit name. A with clause that includes an expanded name also includes an implicit ‘‘with’’ of
the library unit named by each prefix of the expanded name. In other words, referencing a child library
unit in a with clause by its expanded name is equivalent to referencing both the child library unit and its
parent in the with clause.

Example:

with OS.FILE_MANAGER; -- implies: with OS;
procedure MAIN is

FD : OS.FILE_DESCRIPTOR; -- from package OS
begin

FD := OS.FILE_MANAGER.OPEN(
"test_data", OS.FILE_MANAGER.READ_ONLY);

. . .
end MAIN;

If a library unit named in a with clause is private, then its parent must be an ancestor of the compilation
unit being defined. Furthermore, the declaration of a visible child library unit must not depend on a
private child of the same parent package.

[Note: If a library unit is renamed at the library unit level, then the name introduced by the renaming may
also be used in a with clause. If a child library unit is renamed as a root library unit, a ‘‘with’’ using this
new simple name does not implicitly ‘‘with’’ its parent.]

10.1.2. Main Subprograms, Partitions, and Environment Tasks [new]
A program consists of one or more partitions. Each partition consists of one or more library units; one of
the library unit subprograms of a partition may be designated as the main subprogram for that partition.

The library units that make up a partition are elaborated by the environment task of that partition, and
then, if present, the body of the main subprogram is executed. Upon completion of the main subprogram
(if any), the environment task waits until all tasks dependent on its library packages terminate. The
environment task then leaves the scope of the library units of the partition, thereby terminating the
partition.

An implementation must provide a mechanism for building a partition from a set of library units specified
by the user. In the absence of a pragma specifying otherwise (see DS:ALL), a partition will also include a
copy of all other library units on which the specified units depend.

A program terminates when all of its partitions have terminated, or in an implementation-defined manner.

[Note: A partition may be thought of as a separate address space, possibly running on a separate
computer. Implementations are not required to use separate (hardware) address spaces for separate
partitions.]

[Note: An implementation may provide inter-partition communication mechanism(s) via special packages
and pragmas. Standard package categorization pragmas for distribution and methods for specifying inter-
partition communication are defined in DS:ALL.]

5 June 1992 (version 4.6) 10-3

Ada 9X Mapping Specification Ada 9X Program Structure and Compilation Issues

10.1.3. Examples of Compilation Units [originally 10.1.2]

10.2. Subunits of Compilation Units
[Note: We have removed the restriction that all subunits of the same ancestor library unit must have
distinct simple identifiers. Instead we require only that the full expanded names of all program units that
are compilation units be unique. See 10.1.]

By analogy with task bodies, protected unit bodies may be compiled as subunits.

10.2.1. Examples of Subunits

10.3. Order of Compilation

10.4. The Program Library
The description of the program library will be less concrete, and will allow multiple program libraries,
possibly taking advantage of the hierarchical library unit name space.

10.5. Elaboration of Library Units
As in Ada 83, library unit elaboration is performed in an order consistent with the partial ordering defined
by with clauses (RM 10.5(2)). In addition, child library units must be elaborated after the specification of
their parent package.

The syntax for pragma ELABORATE is revised to allow the specification of the full expanded name of a
child library unit.

If the body of a library unit identified in a pragma ELABORATE depends on another library unit, then
the pragma ELABORATE applies to this other unit as well (and so on, recursively). [Note: This ensures
that a subprogram of a library unit identified in a pragma ELABORATE, may be called during the
elaboration of the unit with the pragma, without raising PROGRAM_ERROR.]

[Note: An implementation may provide additional pragmas for controlling elaboration; Annex SP:ALL
defines standard ones.]

[Note: We are studying a proposal to require that all access-before-elaboration (ABE) checking be
performed statically (presumably at link-time in most cases). If the rules can be kept simple yet flexible,
and the implementation is straightforward, this approach could be a big improvement over the complexity
and inefficiency of run-time ABE checks.]

10.5.1. Library Unit Package Categorization [new]
[Note: Further categorizations of library units are discussed in the Annex to which they apply.]

Each library unit package may be categorized using a pragma. The categorization pragma must appear
immediately following the is of the package specification. It applies to both the specification and body of
the package, but not to any child library units. The following categorization pragmas are defined:

10-4 5 June 1992 (version 4.6)

Ada 9X Program Structure and Compilation Issues Ada 9X Mapping Specification

PURE A pure package must not contain library-level variable declarations, library-level
access type declarations, or library-level declarations whose elaboration involves the
execution of a program body. A pure package must depend only on other pure
packages. It must not depend on any library unit subprogram. The body of a pure
package must not have a sequence of statements. A library-level subpackage of a
pure package must also be pure. All pure library unit packages are elaborated prior to
other library units. [Note: These rules are intended to ensure that a library-level
subprogram in a pure package need not perform an access-before-elaboration check.]

ELABORATE_BODY
The body of a package with the ELABORATE_BODY pragma is elaborated
immediately after completing elaboration of the package specification. Any
dependences of the package body are effectively dependences of the package
specification, and must be elaborated prior to elaborating the package specification.

[Note: The above pragmas will allow compilers to eliminate certain access-before-elaboration checks.
Pure packages are particularly important in environments lacking fully shared memory. See Annex
DS:ALL for a further discussion of distributing programs.]

Package STANDARD and package SYSTEM are pure, as are certain packages defined within the
Specialized Needs Annexes. All other language-defined packages are impure.

10.6. Program Optimization

5 June 1992 (version 4.6) 10-5

Ada 9X Mapping Specification Ada 9X Program Structure and Compilation Issues

10-6 5 June 1992 (version 4.6)

Ada 9X Exceptions Ada 9X Mapping Specification

11. Ada 9X Exceptions

11.1. Exception Declarations

11.2. Exception Handlers
The syntax for exception handlers is changed to allow a choice parameter. [Note: The definition of
exception_handler_part is here so as to localize the presentation of the syntax. It does not represent a
language change.]

exception_handler_part ::=
exception exception_handler {exception_handler}

exception_handler ::=
when [choice_parameter:] exception_choice {| exception_choice} =>
sequence_of_statements

choice_parameter ::= identifier

The scope of a choice parameter is the exception handler in which it is declared. A choice parameter is a
constant of type SYSTEM.EXCEPTION_OCCURRENCE; it contains information about the occurrence
of the exception being handled.

The type EXCEPTION_OCCURRENCE is an implementation-defined non-limited type. [Note: Values
of this type may be written to an error log for later analysis, or may be passed to subprograms for
immediate error analysis.]

The following functions are defined in package SYSTEM:

function EXCEPTION_NAME(X: EXCEPTION_OCCURRENCE)
return STRING;

function EXCEPTION_INFORMATION(X: EXCEPTION_OCCURRENCE)
return STRING;

EXCEPTION_NAME returns a name of the exception. It is implementation-defined whether this returns
the simple name of the exception, or the full, expanded name of the exception.

EXCEPTION_INFORMATION returns, as a string, any other information the implementation wishes to
provide. This information should not include the name of the exception, but should include information
identifying the location where the exception occurred, and, for predefined exceptions, the specific kind of
run-time check that failed. The string returned should be in a form suitable for printing to an error log
file.

[Note: The purpose of these functions is to allow programs to print out debugging/error-logging
information in a portable way. A program that prints out the EXCEPTION_INFORMATION is portable
in the sense that it will work in any implementation; it might print out different information, but the
presumption is that the information printed out is appropriate for debugging/error analysis on that system.

5 June 1992 (version 4.6) 11-1

Ada 9X Mapping Specification Ada 9X Exceptions

It is preferred that EXCEPTION_NAME return the full expanded name, starting with the root library unit
in which the exception is declared.

For a re-raise statement, it is preferred that the implementation not create a new
EXCEPTION_OCCURRENCE, but instead propagate the same information. This allows the original
cause of the exception to be determined.

Implementations are allowed to provide other operations.]

11.3. Raise Statements

11.4. Exception Handling

11.4.1. Exceptions Raised During the Execution of Statements

11.4.2. Exceptions Raised During the Elaboration of Declarations

11.5. Exceptions Raised During Task Communication

11.6. Exceptions and Optimization
[Note: The Safety/Security Annex will provide additional control over optimization and code generation.
The ‘‘core’’ rules will be revised to ensure that vectorization and other kinds of pipelining and parallelism
can be utilized to the maximum extent possible, unless a (very) local exception handler is present.]

11.7. Suppressing Checks

11-2 5 June 1992 (version 4.6)

Ada 9X Generic Units Ada 9X Mapping Specification

12. Ada 9X Generic Units

12.1. Generic Declarations
The kinds of generic formal parameters will be extended to include generic formal packages and generic
formal derived types.

The specification of a formal parameter will distinguish between types that may be used to declare
uninitialized objects, and those that must only be used to declare parameters or initialized objects.

generic_parameter_declaration ::=
. . . (as before)
| type identifier[formal_discriminant_part] is

[tagged] [limited] private;
| type identifier[formal_discriminant_part] is

new type_mark [with private];
| with package identifier is new generic_package_name(<>);

formal_discriminant_part ::= discriminant_part | (<>)

As in Ada 83, within a generic unit, attributes and values of generic formal parameters are never static.
However, within a generic declaration, other static semantic checks that depend on information not
specified by the formal part are postponed until the generic is instantiated.

[Note: The checks on declarative items within a generic declaration that are postponed until instantiation
include:

• the scope check associated with deriving from a tagged type (see 3.4), when the check
depends on the nesting level of the instantiation;

• the scope check associated with use of the ACCESS attribute (see 3.10.2) or access type
conversion (see 4.6), when the check depends on the nesting level of the instantiation;

• the check that a component name in a discriminant part or extension part of a derived type
definition does not clash with the name of a component inherited on derivation (see 3.6.1 and
3.8.2), when the parent is a formal private or derived type, or derived from one;

• the check that a non-limited tagged type is not extended with a limited extension part (see
3.4.2);

• the check that a function with a controlling result is explicitly overridden when deriving from
a tagged type (see 3.4.2).

These checks must be performed when the generic is instantiated.]

In a generic body, such checks are not postponed, to ensure that the legality of an instantiation will not
depend on the generic body. Within the body, formal types are assumed to have the characteristics
specified within the formal part:

• If a formal type is not tagged, then the type is treated as an untagged type within the generic
body. Deriving from such a type in a generic body is permitted, and does not create a
distinctly tagged type.

• If a formal type is private, then within the generic body, the type is considered private with
the only named components being the discriminants specified in the formal discriminant part.

5 June 1992 (version 4.6) 12-1

Ada 9X Mapping Specification Ada 9X Generic Units

For checks that depend on other characteristics of the actual instantiation, the worst case is assumed, and
the generic body is rejected if any legal instantiation might cause the check to fail.

[Note: Assuming the ‘‘worst’’ in a generic body implies the following:

• the scope checks are performed assuming the body will be instantiated at a level deeper than
its declaration;

• the staticness checks are performed assuming the generic formal parameters are not static;

• it is not permitted to derive from a formal tagged type in a generic body.]

12.1.1. Generic Formal Objects

12.1.2. Generic Formal Types
Add the following paragraph:

(h) For a formal derived type declaration, the available operations are the primitive
operations defined for the specified parent subtype.

For a formal derived type, these primitive operations are those of the parent type, even if the operation has
been redefined or hidden for the actual type. [Note: This rule is necessary for untagged types because
their primitive operations may be redefined or hidden by operations that are not subtype conformant with
the parent’s operations (see RM 8.3(15)). For a tagged type, the primitive operations of the parent type
are in any case defined as dispatching to the appropriate body based on the type of the actual parameters
(see 3.4.3).]

For a formal private or derived type with (<>) as the formal discriminant part, the type must be assumed
to have an unspecified set of discriminants without defaults, or be a tagged class-wide type, disallowing
its use where a constrained type or a type with defaults for discriminants is required (see 3.6.1 and 3.7.2).

A generic formal private type is considered tagged within the generic only if the modifier tagged appears
in the formal type declaration. In an instantiation, the actual type may be tagged even if the formal is not.

If the parent type of a formal derived type is tagged, then the reserved words with private must appear
in the generic type definition, and the formal derived type is itself considered a tagged type. [Note: This
preserves the property that a tagged type includes in its declaration either the reserved word tagged or
the reserved word with.]

The actual type for a formal numeric type or a formal discrete type must not be.a non-standard numeric
type (see 3.5.4 and 3.5.6). [Note: This restriction is necessary because non-standard numeric types have
some number of restrictions on their use, which could cause ‘‘contract model’’ problems in a generic
body. Note that such types can be used with formal derived and formal private types.]

12.1.3. Generic Formal Subprograms

12-2 5 June 1992 (version 4.6)

Ada 9X Generic Units Ada 9X Mapping Specification

12.1.4. Generic Formal Packages [new]
A generic parameter declaration that is in the form of a package instantiation declares a generic formal
package.

A generic formal package denotes the package instantiation supplied as the corresponding generic actual
parameter in a generic instantiation, as described in section 12.3. In addition, the actual parameters of the
actual package instantiation are available using selected name notation.

Example of using a generic formal package parameter:

generic
type FLOAT_TYPE is digits <>;

package GENERIC_COMPLEX_FUNCTIONS is
-- This package defines a COMPLEX type, as a pair
-- of FLOAT_TYPE values
type COMPLEX is
record
REAL : FLOAT_TYPE;
IMAG : FLOAT_TYPE;

end record;

-- Operations on the COMPLEX type
function "-"(RIGHT : COMPLEX) return COMPLEX;
function "+"(LEFT, RIGHT : COMPLEX) return COMPLEX;
. . .

end GENERIC_COMPLEX_FUNCTIONS;

generic
with package COMPLEX_FUNCTIONS is

new GENERIC_COMPLEX_FUNCTIONS(<>);
package GENERIC_COMPLEX_MATRIX_OPERATIONS is
-- This package defines a COMPLEX_MATRIX type, given an
-- instantiation of the GENERIC_COMPLEX_FUNCTIONS package
type COMPLEX_MATRIX is

array(POSITIVE range <>, POSITIVE range <>)
of COMPLEX_FUNCTIONS.COMPLEX;

-- Operations on COMPLEX_MATRIX type and COMPLEX type.
function "*"(LEFT : COMPLEX_FUNCTIONS.COMPLEX;

RIGHT : COMPLEX_MATRIX)
return COMPLEX_MATRIX;

. . .
end GENERIC_COMPLEX_MATRIX_OPERATIONS;

-- Here are a pair of instantiations:
package SHORT_COMPLEX_PKG is

new GENERIC_COMPLEX_FUNCTIONS(SHORT_FLOAT);

. . .

package SHORT_COMPLEX_MATRIX_PKG is
new GENERIC_COMPLEX_MATRIX_OPERATIONS(SHORT_COMPLEX_PKG);

5 June 1992 (version 4.6) 12-3

Ada 9X Mapping Specification Ada 9X Generic Units

Example of using generic formal package as a signature:

generic
-- This generic defines a signature for a mathematical group

type GROUP_ELEMENT is private;
IDENTITY : in GROUP_ELEMENT;
with function OP(LEFT, RIGHT : GROUP_ELEMENT)
return GROUP_ELEMENT;

with function INVERSE(RIGHT : GROUP_ELEMENT)
return GROUP_ELEMENT;

package GROUP_SIGNATURE is end;

generic
with package GROUP is new GROUP_SIGNATURE(<>);

function POWER(LEFT : GROUP.GROUP_ELEMENT; RIGHT : INTEGER)
return GROUP.GROUP_ELEMENT;

function POWER(LEFT : GROUP.GROUP_ELEMENT; RIGHT : INTEGER)
return GROUP.GROUP_ELEMENT is
-- This generic function applies the group operation
-- to the given group element the specified number of times.
-- If the right operand is negative, the inverse of the result
-- is returned; if it is zero, the identity is returned.
RESULT : GROUP.GROUP_ELEMENT := IDENTITY;

begin
for I in 1 .. abs RIGHT loop

RESULT := GROUP.OP(RESULT, LEFT);
end loop;
if RIGHT < 0 then

return GROUP.INVERSE(RESULT);
else

return RESULT;
end if;

end POWER;

-- Here is an instantiation that ‘‘claims’’ that the
-- short complex numbers are a group over addition:
package SHORT_COMPLEX_ADDITION_GROUP is
new GROUP_SIGNATURE(SHORT_COMPLEX_PKG.COMPLEX,
IDENTITY => (0.0, 0.0),
OP => SHORT_COMPLEX_PKG."+",
INVERSE => SHORT_COMPLEX_PKG."-");

-- Here is an instantiation of POWER for the complex addition group:
function COMPLEX_MULTIPLICATION is
new POWER(SHORT_COMPLEX_ADDITION_GROUP);

12.2. Generic Bodies

12.3. Generic Instantiation
Package instantiations are allowed as a new kind of generic parameter.

generic_actual_parameter ::=
. . . (as before)
| package_instantiation_name

12-4 5 June 1992 (version 4.6)

Ada 9X Generic Units Ada 9X Mapping Specification

12.3.1. Matching Rules for Formal Objects

12.3.2. Matching Rules for Formal Private Types
If the modifier tagged appears in a formal private type declaration, then the actual type must be a tagged
type. The actual type must not be an abstract type (see 3.4.2).

Paragraph 3 of RM 12.3.2 is revised as follows:

• . . .[same first sentence]. If the formal discriminant part is (<>) then the actual type may be
with or without discriminants, constrained or unconstrained. If the formal type has no formal
discriminant part, then the actual subtype may not be an unconstrained array subtype, nor
may it be an unconstrained subtype with discriminants unless all discriminants have defaults.

Paragraph 4 of RM 12.3.2 is deleted — it is unnecessary because we now require (<>) if the actual
subtype is unconstrained without defaults.

[Note: This is not upward compatible. The work-around is to add the (<>) if unconstrained types are to
be supported as actual parameters to the generic.]

12.3.3. Matching Rules for Formal Scalar Types

12.3.4. Matching Rules for Formal Array Types

12.3.5. Matching Rules for Formal Access Types
The access modifier constant must apply to the actual access type if and only if it appears in the formal
access type definition. The access modifier all must apply to the actual access type if it appears in the
formal access type definition. See 3.9. [Note: If no modifier appears in the formal access type definition,
the actual type may be either a pool-specific or a general access-to-variable type.]

12.3.6. Matching Rules for Formal Derived Types [new]
A formal derived type is matched by an actual subtype only if the root of the actual base type is the same
as the specified parent base type or is derived from it, directly or indirectly. The actual type must not be
an abstract type (see 3.4.2).

If a formal type has no formal discriminant part, then the actual subtype must be constrained or have
defaults for all discriminants. If the formal discriminant part is (<>), then the actual type may be with or
without discriminants, constrained or unconstrained. If the formal discriminant part includes discriminant
specifications, then the discriminants of the actual type must match the discriminant specifications of the
formal type as defined for formal private types (see 12.3.2).

A tagged class-wide type is considered a type with an unknown number of discriminants, and hence only
matches a formal type with a discriminant part that is (<>).

If a generic unit has a formal derived type without a formal discriminant part, the constraints on the actual
subtype must statically match those of the formal parent subtype. [Note: We are still studying the general
issue of static versus run-time subtype matching checks on generic instantiation and array conversion.]

5 June 1992 (version 4.6) 12-5

Ada 9X Mapping Specification Ada 9X Generic Units

Example of formal derived type:

package RATIONAL_ARITHMETIC is
-- This package defines a rational number type

type RATIONAL is limited private;

procedure ASSIGN(LEFT : out RATIONAL;
RIGHT : in RATIONAL);

function "+"(LEFT, RIGHT : RATIONAL) return RATIONAL;

. . .
end RATIONAL_ARITHMETIC;

with RATIONAL_ARITHMETIC; use RATIONAL_ARITHMETIC;
with TEXT_IO;
generic
-- This package provides I/O for any derivative of the RATIONAL type

type NUM is new RATIONAL;
package RATIONAL_IO is

procedure GET(FILE : in TEXT_IO.FILE_TYPE;
ITEM : out NUM;
WIDTH : in TEXT_IO.FIELD := 0);

procedure PUT(FILE : in TEXT_IO.FILE_TYPE;
ITEM : in NUM;
FORE : in TEXT_IO.FIELD;
AFT : in TEXT_IO.FIELD;
EXP : in TEXT_IO.FIELD);

end RATIONAL_IO;

12.3.7. Matching Rules for Formal Subprograms [originally 12.3.6]
As in Ada 83, mode conformance is required between the formal and actual subprogram (see MS-6.3.1).

12.3.8. Matching Rules for Formal Packages [new]
A formal package is matched by an actual package instantiation only if the actual package is an
instantiation of the generic package specified in the formal package declaration.

12.4. Example of a Generic Package

12-6 5 June 1992 (version 4.6)

Ada 9X Representation Clauses and Implementation-Dependent Features Ada 9X Mapping Specification

13. Ada 9X Representation Clauses and Implementation-Dependent
Features

13.1. Representation Clauses

13.2. Attribute Definition Clauses [originally Length Clauses]
We generalize the term length clause to attribute definition clause since not all of the attributes being
specified are actually ‘‘lengths.’’ This also allows this syntax to be used within the Specialized Needs
Annexes for other user-specifiable attributes.

attribute_definition_clause ::=
for simple_name’identifier use simple_expression;

| for simple_name’identifier use name;

The attribute identifier in an attribute definition clause must denote an attribute that is user-specifiable.

An attribute definition clause must either contain a simple expression of an appropriate type, or the name
of an entity of an appropriate kind, corresponding to the kind of result the attribute yields.

The effect of an attribute definition clause is to define the attribute of the entity denoted by the simple
name, to be the value of the simple expression, or the entity denoted by the name.

In the absence of an attribute definition clause, the attribute is determined by default, according to
language-defined or implementation-defined rules. In general, the default for an attribute of an object, or
of a subtype declared by a subtype declaration, is determined by the attribute of the subtype named in the
subtype indication given in its declaration.

[Note: We are considering moving some of these to the Systems Programming Annex or eliminating them
completely, so as to minimize the number of user-specifiable attributes described in the core.]

The following attributes are user-specifiable:

SIZE The size in bits for a type, subtype, or object. The expression must be a static
expression of some integer type. For a type or subtype, the size is a lower bound. For
an object, the specified size must be obeyed exactly.

COMPONENT_SIZE
The size in bits for the component of an array type. The expression must be a static
expression of some integer type.

ALIGNMENT The alignment for a type, subtype, or object, in storage units. If the alignment is
positive, then the address of an object must be a multiple of its alignment. If the
alignment is zero, then the object is not necessarily aligned on a storage unit
boundary. The expression must be a nonnegative static expression of some integer
type.

STORAGE_SIZE The number of storage units to be reserved for an access type’s storage pool, or a task
type, subtype, or object. The expression must be of some integer type. As in Ada 83,
the access type must not be a derived type.

SMALL The value to be used for small for a fixed point type that is not a derived type. The
expression must be a static expression of some real type. [Note: The name of this
attribute may change to MODEL_SMALL or MACHINE_SMALL.]

5 June 1992 (version 4.6) 13-1

Ada 9X Mapping Specification Ada 9X Representation Clauses and Implementation-Dependent Features

ADDRESS The address of an object, interrupt entry, task body, subprogram body, or the body of
a package that is a compilation unit. The expression must be of type
SYSTEM.ADDRESS. [Note: As in Ada 83, the ADDRESS attribute may also be
specified using an address clause (see 13.5).]

Implementations may identify further attributes that are user-specifiable. Additional user-specifiable
attributes are identified in Chapter 14 and in the Specialized Needs Annexes (see
SPECIALIZEDNEEDS).

13.3. Enumeration Representation Clauses

13.4. Record Representation Clauses
The order, position, and size of the components of the parent part of a derived type may not be altered if
the parent type is tagged or limited. Only the components of the extension part may have component
clauses. No component of the extension part may be placed prior to a component of the parent part.
[Note: For tagged, this allows assignment and equality on (view) conversions (see 4.6) of a tagged object
to be performed using block operations. For limited, this ensures that conversion can be performed
without copying; copying is inconsistent with having parts that might be controlled, protected, or
inherently aliased.]

13.5. Address Clauses
If an address is specified for a subprogram or object that has a pragma IMPORT without a specified link
name (see 13.9) the address expression need not be a link-time constant. [Note: Such an address clause is
a portable alternative to an unchecked conversion from the address expression to an access-to-subprogram
or object.]

An object with a user-specified address is considered an aliased object.

Note: The specification of a link name in a pragma EXPORT (see 13.9) for a subprogram or object is an
alternative to explicit specification of its link-time address, allowing a link-time directive to place the
subprogram or object within memory.

[Note: The attribute definition clause (see 13.2) may be used to specify the ADDRESS attribute, making
this special syntax for address clauses possibly obsolescent.]

13.5.1. Interrupts
The support for interrupt handling is described in SP:ALL.

13.6. Change of Representation

13-2 5 June 1992 (version 4.6)

Ada 9X Representation Clauses and Implementation-Dependent Features Ada 9X Mapping Specification

13.7. The Package SYSTEM
The pragmas SYSTEM_NAME, STORAGE_UNIT, and MEMORY_SIZE are no longer required.
However, the corresponding declarations in package SYSTEM are still required.

The following new declarations will be added to package SYSTEM:

package SYSTEM is

-- . . . As in Ada 83

-- Define a type and subtypes for offsets in storage units.
type STORAGE_OFFSET is range implementation-defined;
subtype STORAGE_COUNT is STORAGE_OFFSET
range 0..STORAGE_OFFSET’LAST;

subtype STORAGE_INDEX is STORAGE_OFFSET
range 1..STORAGE_OFFSET’LAST;

-- Define an integer type and an array type
-- for representing storage elements
type STORAGE_ELEMENT is range 0..2**STORAGE_UNIT-1;
type STORAGE_ARRAY is array
(STORAGE_INDEX range <>) of STORAGE_ELEMENT;

pragma PACK(STORAGE_ARRAY);

-- Define operators for doing address arithmetic and comparison
function "+"(LEFT : ADDRESS; RIGHT : STORAGE_OFFSET)
return ADDRESS;

function "+"(LEFT : STORAGE_OFFSET; RIGHT : ADDRESS)
return ADDRESS;

function "-"(LEFT : ADDRESS; RIGHT : STORAGE_OFFSET)
return ADDRESS;

function "-"(LEFT, RIGHT : ADDRESS)
return STORAGE_OFFSET;

function "<" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function "<="(LEFT, RIGHT : ADDRESS) return BOOLEAN;
function ">" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function ">="(LEFT, RIGHT : ADDRESS) return BOOLEAN;

end SYSTEM;

The semantics of the arithmetic and comparison operators on ADDRESS are implementation-defined. In
particular, an implementation on a segmented machine may raise CONSTRAINT_ERROR on certain
inter-segment operations.

13.7.1. System-Dependent Named Numbers

13.7.2. Representation Attributes
[Note: There will be more specification for the meaning of the ADDRESS and SIZE attributes, including
in the presence of unconstrained or dynamically-constrained objects.]

5 June 1992 (version 4.6) 13-3

Ada 9X Mapping Specification Ada 9X Representation Clauses and Implementation-Dependent Features

13.7.3. Representation Attributes of Real Types
[Note: See the Numerics Annex, NM:ALL.]

13.8. Machine Code Insertions

13.9. Interface to Other Languages
The following pragmas are available for interfacing to other languages and controlling the overall
representation of program entities, instead of the INTERFACE pragma:

IMPORT(entity_simple_name, language_simple_name [, string])
Specify that the entity denoted by the name is defined externally. The language
simple name determines what calling convention (see 6.3.1) or layout convention is to
be assumed for the entity. The elaboration of the declaration for such an entity has no
effect other than to allow the identifier to denote the external entity. If such an entity
is an object, no initial expression may be provided in its declaration. The optional
third parameter specifies the link name, the name used to link the entity with the
external environment. In the absence of such a link name, either an address clause
must be specified for the entity, or a link name derived from its Ada name (in an
implementation-defined manner) will be used. The pragma IMPORT must appear
immediately within the same declarative region as the entity’s declaration, prior to a
forcing occurrence for the entity. It is implementation-defined what kinds of entities
may be imported, and from what languages. In the presence of multiple
implementations of the same language, the language simple name identifies both the
language and the particular implementation.

EXPORT(entity_simple_name, language_simple_name [, string])
Specify that the (library-level) entity denoted by the name is to be accessible
externally. The language simple name determines what calling convention (see 6.3.1)
or layout convention is to be used for the entity. This pragma allows a non-Ada
program to call an Ada subprogram, or reference an Ada object, for languages
supported by an implementation. The optional third parameter specifies the link
name for the entity. In the absence of such a link name, a link name derived from its
Ada name (in an implementation-defined manner) will be used. The pragma
EXPORT must appear immediately within the same declarative region as the entity’s
declaration, prior to a forcing occurrence for the entity. It is implementation-defined
what kinds of entities may be exported, and what language conventions are supported.
In the presence of multiple implementations of the same language, the language
simple name identifies both the language and the particular implementation. [Note:
Additional pragmas for further specifying the calling or layout conventions, perhaps
on a parameter-by-parameter or component-by-component basis, are implementation-
defined.]

LANGUAGE(entity_simple_name, language_simple_name)
Specify that the given entity should follow the calling convention (see 6.3.1) or layout
conventions associated with the specified language. This pragma allows access-to-
subprogram types to designate subprograms with non-Ada calling conventions. It
also allows types to be layed out according to the conventions of some other language
(e.g. COBOL or C) without requiring a detailed representation clause. The pragma
LANGUAGE must appear immediately within the same declarative region as the
entity’s declaration, prior to a forcing occurrence for the entity. It is implementation-
defined what language conventions are supported for which kinds of entities. In the
presence of multiple implementations of the same language, the language simple
name identifies both the language and the particular implementation.

13-4 5 June 1992 (version 4.6)

Ada 9X Representation Clauses and Implementation-Dependent Features Ada 9X Mapping Specification

13.10. Unchecked Programming

13.10.1. Unchecked Storage Deallocation

13.10.2. Unchecked Type Conversions

13.10.3. Unchecked Access Value Creation
The attribute P’UNCHECKED_ACCESS, when applied to a prefix P that denotes an aliased object,
creates an access value for that object. The type of P’UNCHECKED_ACCESS must be determined from
context, and must be an access type that could designate the object denoted by P if it had been declared at
the library-level. If the type is an access parameter type (see 3.9), then the the scope level associated with
the object designated by the access parameter will be library-level, for the purposes of subsequent type
conversion scope checks (see 4.6).

All rules that apply to the ACCESS attribute (see 3.9.2), other than scope-checking rules, also apply to
UNCHECKED_ACCESS. In other words, UNCHECKED_ACCESS bypasses scope checking, but still
enforces other type checking rules in producing an access value.

[Note: This attribute is provided to support the situation where a local aliased object is to be inserted into
a global linked data structure, when the programmer knows that it will always be removed from the data
structure prior to exiting the object’s scope. ’ACCESS would be illegal in this case (see 3.10.2)]

5 June 1992 (version 4.6) 13-5

Ada 9X Mapping Specification Ada 9X Representation Clauses and Implementation-Dependent Features

13-6 5 June 1992 (version 4.6)

Ada 9X Input-Output Ada 9X Mapping Specification

14. Ada 9X Input-Output

14.1. External Files and File Objects

14.2. Sequential and Direct Files

14.2.1. File Management

14.2.2. Sequential Input-Output
The type SEQUENTIAL_IO.FILE_MODE will have a new enumeration literal APPEND_FILE, which
indicates that the file should be opened for output and positioned at the end.

[Note: This is not upward compatible. For example, case statements on the mode will have to change.
However, the incompatible cases should be rare, and the workaround is straightforward.]

14.2.3. Specification of the Package Sequential_IO

14.2.4. Direct Input-Output
[Note: APPEND_FILE mode is not supported for package DIRECT_IO.]

14.2.5. Specification of the Package Direct_IO

14.3. Text Input-Output

14.3.1. File Management
APPEND_FILE mode will be added as for SEQUENTIAL_IO.

14.3.2. Default Input and Output Files

14.3.3. Specification of Line and Page Lengths

14.3.4. Operations on Columns, Lines, and Pages

14.3.5. Get and Put Procedures

5 June 1992 (version 4.6) 14-1

Ada 9X Mapping Specification Ada 9X Input-Output

14.3.6. Input-Output of Characters and Strings
[Note: In accordance with the April ’92 ISO WG9 meeting, we have dropped proposals that depend on
untagged class-wide types.]

14.3.7. Input-Output for Integer Types
[Note: In accordance with the April ’92 ISO WG9 meeting, we have dropped proposals that depend on
untagged class-wide types.]

14.3.8. Input-Output for Real Types
[Note: In accordance with the April ’92 ISO WG9 meeting, we have dropped proposals that depend on
untagged class-wide types.]

14.3.9. Input-Output for Enumeration Types

14.3.10. Specification of the Package Text_IO

14.4. Exceptions in Input-Output

14.5. Specification of the Package IO_Exceptions

14.6. Low Level Input-Output
This section and the package it describes is removed from the standard.

14.7. Stream Input-Output [new]
A storage element is a sequence of bits of length SYSTEM.STORAGE_UNIT. A stream is logically a
sequence of storage elements. A stream type is a type in the class rooted at
STREAM_SUPPORT.ROOT_STREAM_TYPE. A stream type may be implemented in various ways.
Examples include an external file, an internal buffer, and a network channel.

Ada types for storage elements and streams are declared in the predefined STREAM_SUPPORT package.
STREAM_SUPPORT.STREAM_ACCESS is an access type designating the class-wide type
ROOT_STREAM_TYPE’CLASS.

14.7.1. T’READ and T’WRITE [new]
This section specifies operations for converting a value of a type into a stream of storage elements and
reconstructing a value of the type from such a stream.

The T’READ and T’WRITE operations are user-specifiable attributes. All non-limited types have default
implementations for these operations. The default implementations may be overridden, as follows:

14-2 5 June 1992 (version 4.6)

Ada 9X Input-Output Ada 9X Mapping Specification

procedure WRITE(
STREAM : STREAM_SUPPORT.STREAM_ACCESS; ITEM: T);

for T’WRITE use WRITE;

function READ(STREAM : STREAM_SUPPORT.STREAM_ACCESS)
return T;

for T’READ use READ;

The T’WRITE operation converts a value of the type T to a sequence of storage elements, and appends
this sequence to the specified stream.

The T’READ operation removes a sequence of storage elements from the specified stream, converts it to
a value of type T, and returns the value. It expects the next sequence of storage elements for that stream
to have the form written by T’WRITE; if the elements do not have that form, CONSTRAINT_ERROR is
raised.

14.7.2. Predefined T’WRITE and T’READ [new]
The predefined T’READ and T’WRITE operations for an elementary type T transfer the number of
storage elements that would be used for a component of an unpacked array of T.

The predefined T’READ and T’WRITE for a composite type execute as follows:

• For an array type T defined by an unconstrained array definition, the length of each
dimension appears first in the stream, followed by the components.

The representation of the length of a dimension is the same as the representation that would
be used by the implementation for a value of an integer type whose range is 0 up to the
maximum length for the dimension.

• For a type T that is packed or has a representation clause, the components of the type are
transferred in a block using the in-memory representation of the composite type.

• For a type T that is not packed and has no representation clause, the components of the type
are transferred by sequentially executing the READ or WRITE operation for each component
type, in the canonical component order. This order is last dimension varying fastest for an
array, and positional-aggregate order for a record.

If two consecutive components of such a type do not have compatible alignments, then a call
on the stream’s ALIGN operation is performed between the READ or WRITE operations of
the two components. The ALIGN operation is passed the alignment requirements of the
second of the two components. A given stream type may choose to ignore the call on
ALIGN, or it may use it to keep the stream aligned in a way that is compatible with the
alignment requirements of the objects in the stream.

14.7.3. Validation on T’READ [new]
The predefined T’READ operation for a scalar type checks that the value is within the range of the base
type. CONSTRAINT_ERROR is raised if this check fails.

The predefined T’READ operation for a composite type must omit range checks on scalar subcomponents
(other than discriminants) that do not have a default initial expression in their component declaration, as
such components need not be initialized prior to being written with T’WRITE.

5 June 1992 (version 4.6) 14-3

Ada 9X Mapping Specification Ada 9X Input-Output

14.7.4. T’WRITE and T’READ for Tagged Class-Wide Types [new]
The predefined READ and WRITE operations for a tagged class-wide type T’CLASS use a unique value
to represent the type tag. The value used to represent each tag is determined at the time the corresponding
type declaration is compiled. For each tagged type, the value used to represent the tag is distinct from the
value used to represent the tags of other previously compiled types in that class. If T’CLASS’READ does
not recognize the value as a valid tag identifier for a type included in the program, it raises
CONSTRAINT_ERROR.

Notes:

T’READ and T’WRITE will generally be implemented in terms of READ and WRITE operations of
simpler component types, or in terms of the primitive stream operations defined in package
STREAM_SUPPORT.

14.7.5. The Package STREAM_SUPPORT [new]
ROOT_STREAM_TYPE is the root type of the class of stream types. The types in this class represent
different kinds of streams. A new type is derived to represent the structure and requirements of each kind
of stream. READ, WRITE, and ALIGN operations must be provided on each new stream type. These
operations are used by the predefined T’READ and T’WRITE operations. They may also be used by
user-defined T’READ and T’WRITE operations.

with SYSTEM;
package STREAM_SUPPORT is

type ROOT_STREAM_TYPE is tagged limited private;
type STREAM_ACCESS is access ROOT_STREAM_TYPE’CLASS;

procedure READ(
STREAM : in out ROOT_STREAM_TYPE;
ITEM : out SYSTEM.STORAGE_ARRAY;
LAST : out SYSTEM.STORAGE_COUNT) is <>;

procedure WRITE(
STREAM : in out ROOT_STREAM_TYPE;
ITEM : in SYSTEM.STORAGE_ARRAY) is <>;

procedure ALIGN(
STREAM : in out ROOT_STREAM_TYPE;
ALIGNMENT : in SYSTEM.STORAGE_COUNT) is <>;

private
. . . -- implementation defined

end STREAM_SUPPORT;

The READ operation transfers ITEM’LENGTH storage elements from the specified stream to fill the
array ITEM. The index of the last storage element transferred is returned in LAST. LAST is only less
than ITEM’LAST if the end of the stream is reached.

The WRITE operation appends ITEM to the specified stream.

If the stream maintains alignment, then the ALIGN operation appends the minimum number of storage
items to the specified stream needed to cause the position within the stream to be a multiple of
ALIGNMENT.

14-4 5 June 1992 (version 4.6)

Ada 9X Input-Output Ada 9X Mapping Specification

14.7.6. Heterogeneous Input-Output [new]
A general stream-oriented I/O package is provided to support heterogeneous I/O. All of the operations
declared here that correspond to SEQUENTIAL_IO operations have the same semantics as those
SEQUENTIAL_IO operations.

with IO_EXCEPTIONS;
package STREAM_SUPPORT.STREAM_IO is

-- This package is similar to Sequential_IO,
-- Except that it reads and writes Storage_Elements
-- directly or by using T’READ and T’WRITE

type FILE_TYPE is limited private;
type FILE_MODE is (IN_FILE, OUT_FILE, APPEND_FILE);

procedure CREATE(FILE : in out FILE_TYPE;
MODE : in FILE_MODE := OUT_FILE;
NAME : in STRING := "";
FORM : in STRING := "");

procedure OPEN(FILE : in out FILE_TYPE;
MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING := "");

5 June 1992 (version 4.6) 14-5

Ada 9X Mapping Specification Ada 9X Input-Output

procedure CLOSE(FILE : in out FILE_TYPE);
procedure DELETE(FILE : in out FILE_TYPE);
procedure RESET(FILE : in out FILE_TYPE; MODE : in FILE_MODE);
procedure RESET(FILE : in out FILE_TYPE);

function MODE(FILE : in FILE_TYPE) return FILE_MODE;
function NAME(FILE : in FILE_TYPE) return STRING;
function FORM(FILE : in FILE_TYPE) return STRING;

function IS_OPEN(FILE : in FILE_TYPE) return BOOLEAN;
function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

function STREAM(FILE : in FILE_TYPE)
return STREAM_SUPPORT.STREAM_ACCESS;
-- Return stream access for use with T’WRITE and T’READ.

-- The following operations are equivalent
-- to the analogous operations on Streams:

-- Read array of storage elements from file
procedure READ(
FILE : in FILE_TYPE;
ITEM : out SYSTEM.STORAGE_ARRAY;
LAST : out SYSTEM.STORAGE_COUNT
-- Last < ITEM’LAST only if end-of-stream reached

); -- Raises USE_ERROR if mode is not In_File

-- Write array of storage elements into file
procedure WRITE(
FILE : in FILE_TYPE;
ITEM : in SYSTEM.STORAGE_ARRAY

); -- Raises USE_ERROR if mode is not Out_File or Append_File

-- Align file offset to be multiple of alignment
procedure ALIGN(
FILE : in FILE_TYPE;
ALIGNMENT : in SYSTEM.STORAGE_COUNT

); -- Adjust offset in File to multiple of alignment

14-6 5 June 1992 (version 4.6)

Ada 9X Input-Output Ada 9X Mapping Specification

-- Operations on position within file
-- These operations raise USE_ERROR if the file
-- does not support repositioning.

type FILE_OFFSET is range 0..<implementation_DEFINED>;
-- Offset in file, in storage units.

type BASE_POSITION is
(BEGINNING_OF_FILE, CURRENT_POSITION, END_OF_FILE);
-- Base for repositioning

-- Get current file position,
-- as an offset relative to beginning of file
function POSITION(FILE : in FILE_TYPE) return FILE_OFFSET;

-- Set file position
procedure SET_POSITION(
FILE : in FILE_TYPE;
OFFSET : in FILE_OFFSET;
RELATIVE_TO : BASE_POSITION := BEGINNING_OF_FILE

);

-- Get current size, in storage units
function SIZE(FILE : in FILE_TYPE) return FILE_OFFSET;

-- Change mode without repositioning
procedure SET_MODE(FILE : in out FILE_TYPE; MODE : in FILE_MODE);

-- Flush any buffers associated with file,
-- without closing file or repositioning
procedure FLUSH(FILE : in out FILE_TYPE);

-- exceptions
STATUS_ERROR : exception renames IO_EXCEPTIONS.STATUS_ERROR;
MODE_ERROR : exception renames IO_EXCEPTIONS.MODE_ERROR;
NAME_ERROR : exception renames IO_EXCEPTIONS.NAME_ERROR;
USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR : exception renames IO_EXCEPTIONS.DATA_ERROR;

end STREAM_SUPPORT.STREAM_IO;

14.8. Example of Input-Output

5 June 1992 (version 4.6) 14-7

Ada 9X Mapping Specification Index

14-8 5 June 1992 (version 4.6)

Index Ada 9X Mapping Specification

Index
Abort 9-9

deferred during a protected operation 9-9
of a sequence of statements 9-9
of a task 9-9
propagation of 9-9
See also asynchronous transfer of control

Abortable final part 9-9
Abstract operation

calling an 3-6
Abstract subprogram 6-1
Abstract type 3-6
Accept statement 9-4
ACCESS (new predefined attribute) 3-12, 13-5

overloading of 3-14
to create access-to-subprogram values 3-14
used within extension part to specify access discriminant 3-12

Access definition 3-13
specifying formal parameter 6-1

Access discriminant 3-10
Access parameter 6-1, 6-2
Access type 3-12

pool-specific 3-12
See also general access type

Accuracy constraint 3-2
ADA (new predefined language name) 6-2
ADDRESS (predefined attribute) 13-1, 13-3
ADDRESS (predefined type)

arithmetic and comparison operators defined for 13-3
Aggregate 4-1

See also array aggregate, record aggregate
AI-00174 3-9
AI-00868 4-3
Aliased object 3-13
ALIGN (new predefined abstract operation) 14-3, 14-4
ALIGNMENT (new predefined attribute) 13-1
Allocator 3-14

overloading of 3-14
Ancestor 4-3
Anonymous access type 3-13
APPEND_FILE (new input-output file mode enumeration literal) 14-1
Applicable constraint 4-4
Array aggregate 4-2

restrictions on others in presence of named associations removed 4-2
Array type

implicit subtype conversion generalized 4-4
Assignment operation 5-1
Attribute (user-specifiable) 13-1
Attribute definition clause 13-1

effect of 13-1

Barrier condition 9-4, 9-5
evaluation 9-4, 9-5
evaluation of 9-5
exception in a 9-5

BASE (predefined attribute) 3-3
T’BASE allowed as a type mark 3-3

Basic declarative item 3-15
Basic operation

allowed within a static expression 4-5
Bounded error

on reading scalar out parameter 6-1
within protected operation 9-6

CALENDAR (predefined package) 9-7
Calling convention 6-2
Categorization (of library unit packages) 10-4
Categorization pragma 10-4

5 June 1992 (version 4.6) I-1

Ada 9X Mapping Specification Index

CHARACTER (predefined type) 3-7
Checks

not postponed on generic bodies 12-1
on out and in out parameters passed by reference 6-3
on predefined T’READ 14-3
on scope level for conversion of an access parameter 4-4
postponed on generic declarations 12-1

Child library unit 10-1
elaboration of 10-4
in with clause 10-2
private 10-1
visible 10-1

Child package
name made directly visible by use clause for parent 8-2

Child part (of a package) 10-1
Choice parameter (of an exception handler) 11-1
Class 3-1

derivation 3-1
language-defined 3-1
of all task types 9-1

Class-wide operation 3-3
Class-wide type 3-1

explicitly declared operations of a 3-3
Compilation unit 10-1
COMPONENT_SIZE (new predefined attribute) 13-1
Composite type 3-1, 3-10

may have a discriminant 3-10
variable constrained by initial value 3-10

Conformance 6-2
See also full conformance, mode conformance, subtype conformance, type conformance

CONSTRAINED (predefined attribute) 7-2
Constraint

statically matching 4-5
CONSTRAINT_ERROR (predefined exception)

raised when tags of controlling operands are not the same 3-6
Context clause 10-2
Controlling operand 3-6

of a primitive operation 3-6
Controlling result

See also controlling operand
Controlling tag value 3-6
Convertibility 4-3
COUNT (predefined attribute) 9-5

may be referenced in barrier condition 9-4
value available within protected unit body 9-5

Declaration 3-1
introduces a view 3-1

Declarative part 3-15
Default expression

in a protected specification 9-3
Deferred constant 7-2

may be of any type 7-2
Delay statement 9-7

considered synchronization point for abort 9-7
Delta (reserved word)

only allowed as part of a real type definition 3-2
Derivation class 3-1
Derived type 3-3

characteristics of 3-3
inherits primitive operations of parent type 3-4
set of operations of 3-4
set of values of 3-3

Digits (reserved word)
only allowed as part of a real type definition 3-2

Direct visibility
for simple names of child packages 8-2

Discrete range
with ROOT_INTEGER bounds 3-11

Discrete type

I-2 5 June 1992 (version 4.6)

Index Ada 9X Mapping Specification

required for controlling a variant part 3-12
Discriminant 3-10

allowed for any composite type 3-10
controlling a variant part must be discrete 3-12
must appear alone in constraint on underlying type 3-11
of a statically constrained object or subtype is static 4-5
of a task type 9-1
on array type 3-11
passed by copy 3-10
uses in type definition 3-11
See also access discriminant

Discriminant part conformance 6-2
Dispatching operations (on tagged types) 3-6

ELABORATE (predefined pragma) 10-4
ELABORATE_BODY (new predefined pragma) 10-5
Elaboration

of child library units 10-4
of library units 10-4

Elementary type 3-1
Entry

as a protected operation 9-4
named within requeue statement 9-6

Entry body 9-4
Entry call 9-4, 9-5

cancellation of 9-5
Entry declaration

visibility of 9-1
Entry family index 9-4
Entry queue

servicing 9-5
Environment task 10-3

of a partition 10-3
Equality

may be overloaded for any parameter and result types 6-3
Exception handler 11-1
EXCEPTION_INFORMATION (new predefined function) 11-1
EXCEPTION_NAME (new predefined function) 11-1
EXCEPTION_OCCURRENCE (new predefined type) 11-1
Execution

of protected operation 9-4
of requeue statement 9-6

Expanded name
for child library unit 10-1
uniqueness of 10-2

Expected type
of the operand of qualified expression 4-5

Exponentiation
arbitrary association of factors allowed for computing result 4-3

EXPORT (new predefined pragma) 13-4
Extension of a type

private extension 7-1
Extension part 3-4

in a derived type definition 3-3
of a composite type 3-4

FILE_MODE (predefined type) 14-1
FIRST (predefined attribute) 3-8
First-named subtype 3-2
Fixed point type

accuracy constraints removed 3-2
Floating point type

accuracy constraints removed 3-2
Formal discriminant part 12-2
Formal parameter

mode 6-1
specified by an access definition 6-1

Full conformance 6-2
between discriminant parts of corresponding private and full type declarations 7-1

Function

5 June 1992 (version 4.6) I-3

Ada 9X Mapping Specification Index

as a protected operation 9-4
returning value of a limited type 7-2

General access modifier 3-12
General access type 3-12

designating aliased objects 3-13
designating constants 3-12
designating subprograms 3-12
values created by ACCESS attribute 3-12

Generic formal derived type 12-1, 12-2
considered tagged 12-2
with formal discriminant part 12-2

Generic formal discriminant part 12-1
Generic formal package 12-1, 12-3
Generic formal parameter 12-1
Generic formal private type

considered tagged 12-2
with formal discriminant part 12-2

Generic formal type 12-2
Generic instantiation 12-4

Heterogeneous input-output 14-5
Homograph 8-2

of inherited primitive operation 3-4

Implicit type conversion 4-4
no affect on overload resolution 4-4

IMPORT (new predefined pragma) 13-4
Inequality

implicitly declared when equality is declared with BOOLEAN result 6-3
Inherit 3-4
Initialization

required of objects of a tagged class-wide type 3-5
Integer class 3-7
INTERFACE (predefined pragma) 13-4
Interrupt 13-2
INTRINSIC (new predefined language name) 6-2
Intrinsic operation 6-2
Iterator

used in an entry family 9-4

LANGUAGE (new predefined pragma) 13-4
Language name 6-2
Language-defined class 3-1
LAST (predefined attribute) 3-8
Later declarative item 3-15

ordering requirement eliminated for 3-15
Length clause 13-1

See also attribute definition clause
Library unit 10-1

child 10-1
in a partition 10-3
parent 10-1
root 10-1

Library unit package 10-1
categorization 10-4

Library-level scope 8-1
Limited type 7-2

protected type as 9-3
value of, returned by function 7-2

LONG_FLOAT 3-9
LONG_INTEGER 3-8

Main subprogram 10-3
of a partition 10-3

Matching generic formal
access type 12-5
derived type 12-5
packages 12-6
private type 12-5

I-4 5 June 1992 (version 4.6)

Index Ada 9X Mapping Specification

subprograms 12-6
tagged type 12-5
type with formal discriminant part 12-5

Matching rules
See also operand matching rules

Membership test 4-2
for an expression of a class-wide type 4-2

MEMORY_SIZE (predefined pragma) 13-3
Mode conformance 6-2
Multiple inheritance 3-12
Multiplying operator 4-2

defined for root numeric types 4-2

Name
of protected operation 9-4

Object
of a protected type 9-2

Operand matching rules 3-3
used in assignment 5-1

Operation
class-wide 3-3
primitive 3-2

Out parameter 6-1
of a task type 9-1
restriction on use as a primary is eliminated 4-2

Overload resolution 8-3
Overloading

of equality operator 6-3
of inequality operator 6-3

Parameter associations 6-2
rules for 6-2

Parameter passing 6-1
Parent library unit 10-1
Parent part

of a composite type 3-4
Partition 10-3

of library units 10-3
Pool-specific access type 3-12
Pragma

in a protected specification 9-3
in a task specification 9-1

PRECISE_FIXED (new predefined type) 4-3
Preference rule 8-3

for primitive operators of root numeric types 8-3
Primitive operation 3-2

controlling operand of 3-6
not defined for class-wide types 3-3
of a protected type 3-2
of a specific type 3-2
of a tagged type is dispatching 3-6
of a task type 3-2

Private child 10-1
Private extension 7-1

example 7-1
requires record extension as corresponding full type declaration 7-1

Private part
of a package 10-1
of a protected specification 9-3
of a protected unit 9-4
of a task specification 9-1

Private type 7-1
considered composite type 7-1
tagged 7-1
with discriminants 7-1

Procedure
as a protected operation 9-4

Program
termination of 10-3

5 June 1992 (version 4.6) I-5

Ada 9X Mapping Specification Index

Program library 10-4
PROGRAM_ERROR (predefined exception)

may be raised within protected operation 9-6
Protected (new reserved word) 9-2
Protected 9-2
Protected action

cancelled call on 9-5
execution of 9-4

Protected body 9-2
Protected component 9-2, 9-3
Protected declaration

as a basic declaration 3-1
Protected object 9-3

as a parameter 9-3, 9-4
singleton 9-2

Protected operation 9-2, 9-4
body of 9-4
name of 9-4
operations disallowed within 9-5
visibility 9-4
visibility of 9-3

Protected record unit
as declarative region 8-1

Protected specification 9-2
private part 9-3
visible part 9-3

Protected type 9-2, 9-3
anonymous 9-2
as a limited composite type 9-3
primitive operations of 3-2

Protected unit 9-2
Protected unit body 9-4

allowed as subunit 10-4
PURE (new predefined pragma) 10-4

Qualified expression 4-5

RANGE (predefined attribute)
of a statically constrained object or subtype is a static range 4-5

READ (user-specifiable attribute) 14-2, 14-3, 14-4
predefined for composite type 14-3
predefined for elementary type 14-3
predefined for tagged class-wide type 14-4

Record aggregate 4-1
not allowed where an extension part is private 4-1

Record extension
required as corresponding full type declaration for private extension 7-1

Record extension part 3-12
Record representation clause

on tagged type 13-2
Record type

may include reserved word limited in definition 3-11
may include reserved word tagged in definition 3-11

Relational operator 4-2
Renaming declaration

as subprogram body 6-1, 8-2
Representation clause

in a task specification 9-1
Requeue (new reserved word) 9-6
Requeue statement 9-6

execution of 9-6
handling formal parameters of 9-6
with abort 9-7
within accept statement 9-6
within entry body 9-6

Root library unit 10-1
Root type 3-1
ROOT_INTEGER (new predefined type) 3-7
ROOT_REAL (new predefined type) 3-8
ROOT_STREAM_TYPE (new predefined type) 14-2, 14-4

I-6 5 June 1992 (version 4.6)

Index Ada 9X Mapping Specification

Scalar attribute 4-5
of a statically constrained object or subtype is static 4-5

Scope
of a choice parameter 11-1

Scope check 8-1
Scope level 8-1

of a derived tagged type 3-5
of a protected operation 8-1
of a subcomponent of an object 8-1
of access parameter type 8-1
of access-to-constant object 3-14
of derived access type 8-1
of object designated by access parameter 8-1
of object designated by access value 8-1
of operand type in access type conversion 4-4
of subprogram designated by an access value 3-14

Scope of declaration 8-1
See also scope level

Select statement
with abortable final part 9-9

Servicing of entry queues 9-5
Set of operations

associated with a type 3-1
Set of values

associated with a type 3-1
Shared variables 9-10
SIZE (predefined attribute) 13-1, 13-3
SMALL (predefined attribute) 13-1
Specific type 3-1
STANDARD (predefined package)

as pure 10-5
Static expression 4-5

evaluated exactly 4-5
Static range 4-5
Static subtype 4-5
Statically compatible constraint 4-5
Statically matching constraint 4-5
Statically matching subtype 4-5
Storage element 14-2
Storage pool 3-12
STORAGE_SIZE (predefined attribute) 13-1
STORAGE_UNIT (predefined pragma) 13-3
STORAGE_UNIT (predefined type) 14-2
Stream 14-2
Stream type 14-2, 14-4
STREAM_ACCESS (new predefined type) 14-2
STREAM_IO (new predefined package) 14-5
STREAM_SUPPORT (new predefined package) 14-2, 14-4
Subprogram

as a protected operation 9-4
Subprogram body

provided by renaming declaration 6-1, 8-2
Subprogram specification conformance 6-2
Subtype

first-named 3-2
statically matching 4-5

Subtype conformance 6-2
between inherited and overriding primitive operation of tagged type 3-5
checking based on statically matching constraints and subtypes 4-5
for entry named in requeue statement 9-6
required for body provided by renaming declaration 6-1

Subtype conversion 4-4
implicit subtype conversion for array types generalized 4-4

Subtype declaration 3-2
Subunit 10-4
SYSTEM (predefined package)

as pure 10-5
Systematic replacement 3-4
SYSTEM_NAME (predefined pragma) 13-3

5 June 1992 (version 4.6) I-7

Ada 9X Mapping Specification Index

TAG (new predefined attribute)
in membership test 4-2

Tag value 3-5
associated with each tagged specific type 3-5
controlling 3-6

Tagged (new reserved word)
allowed in record or private type declarations 3-4

Tagged class-wide type
illegal to apply constraint on 3-2
object require initialization 3-5

Tagged private type 7-1
Tagged type 3-4

extended with additional discriminants 3-4
extended with private part 3-4
extended with record part 3-4

Task body 9-1
Task class 9-1
Task object 9-1
Task priority 9-9
Task specification

private part 9-1
revised syntax 9-1
visible part 9-1

Task synchronization 9-10
Task type 9-1

out parameter of 9-1
primitive operations of 3-2
with discriminants 9-1

TASKING_ERROR (predefined exception)
raised on attempt to create dependent of aborted task or master 9-9

TASK_CLASS (new predefined type) 9-1
TIME (predefined type) 9-7
Time type

in delay statement 9-7
Type 3-1

associated set of operations 3-1
associated set of values 3-1
class-wide 3-1
composite 3-1
convertibility of 4-3
elementary 3-1
extension of 3-4
root 3-1
specific 3-1
with non-discrete discriminants considered limited 3-10

Type conformance 6-2
Type conversion 4-3

between access types 4-4
of a static expression to a static subtype is static 4-5
to access-to-subprogram types 4-4
to general access types 4-4
See also implicit type conversion

Type declaration 3-2
Type extension 3-4

example of extension of a tagged type 3-4
Type extension part 3-4
Type mark

T’BASE allowed as 3-3
Type tag 3-4

Unchecked access value 13-5
UNCHECKED_ACCESS (new predefined attribute) 13-5
Unconstrained subtype

variable constrained by initial value 3-10
Unconstrained variable

variable constrained by initial value 3-10
UNIVERSAL_FIXED 4-2

replaced by PRECISE_FIXED 4-3
UNIVERSAL_INTEGER 4-2
UNIVERSAL_REAL 4-2

I-8 5 June 1992 (version 4.6)

Index Ada 9X Mapping Specification

replaced by ROOT_REAL’CLASS 3-8
Until (new reserved word) 9-7
Use clause 8-2

for parent makes simple names of children directly visible 8-2
User-specifiable attribute 13-1, 13-2

VAL (predefined attribute) 3-7
Value

of a protected type 9-2
Variant part

controlling discriminant must be discrete 3-12
View 3-1
View conversion

of tagged class-wide type 3-5
value of abstract type only produced by view conversion 3-6

Visibility
of a protected operation 8-2, 9-3, 9-4
of entry declaration 9-1

Visible child 10-1
Visible part

of a package 10-1
of a protected specification 9-3
of a task specification 9-1

WIDE_CHARACTER (new predefined type) 3-7
WIDE_STRING (new predefined type) 3-11
With clause 10-2

implicit for parent library unit 10-2
when named library unit is private 10-3

WRITE (user-specifiable attribute) 14-2, 14-3, 14-4
predefined for composite type 14-3
predefined for elementary type 14-3
predefined for tagged class-wide type 14-4

5 June 1992 (version 4.6) I-9

Ada 9X Mapping Specification Table of Contents

I-10 5 June 1992 (version 4.6)

Table of Contents Ada 9X Mapping Specification

Table of Contents
0. Reader’s Guide to the Ada 9X Mapping Specification Snapshot 2-1
3. Ada 9X Declarations and Types 3-1

3.1. Declarations 3-1
3.2. Objects and Named Numbers 3-1

3.2.1. Object Declarations 3-1
3.2.2. Number Declarations 3-1

3.3. Types and Subtypes 3-1
3.3.1. Type Declarations 3-2
3.3.2. Subtype Declarations 3-2
3.3.3. Classification of Operations 3-2

3.4. Derived Types 3-3
3.4.1. Tagged Types and Type Extensions [new] 3-4
3.4.2. Operations of Tagged Types [new] 3-6

3.5. Scalar Types 3-7
3.5.1. Enumeration Types 3-7
3.5.2. Character Types 3-7
3.5.3. Boolean Types 3-7
3.5.4. Integer Types 3-7
3.5.5. Operations of Discrete Types 3-8
3.5.6. Real Types 3-8
3.5.7. Floating Point Types 3-9
3.5.8. Operations of Floating Point Types 3-9
3.5.9. Fixed Point Types 3-9
3.5.10. Operations of Fixed Point Types 3-10

3.6. Composite Types [new] 3-10
3.6.1. Discriminants [originally RM 3.7.1] 3-10
3.6.2. Discriminant Constraints [originally RM 3.7.2] 3-11

3.7. Array Types [originally RM 3.6] 3-11
3.7.1. Index Constraints and Discrete Ranges [originally RM 3.6.1] 3-11
3.7.2. Operations of Array Types [originally RM 3.6.2] 3-11
3.7.3. String Types [originally RM 3.6.3] 3-11

3.8. Record Types [originally RM 3.7] 3-11
3.8.1. Variant Parts [originally RM 3.7.3] 3-12
3.8.2. Record Extension [new] 3-12
3.8.3. Operations of Record Types [originally RM 3.7.4] 3-12

3.9. Access Types [originally 3.8] 3-12
3.9.1. Incomplete Type Declarations [originally 3.8.1] 3-13
3.9.2. Operations of Access Types [originally 3.8.2] 3-13

3.10. Declarative Parts [originally 3.9] 3-1

4. Ada 9X Names and Expressions 4-1
4.1. Names 4-1

4.1.1. Indexed Components 4-1
4.1.2. Slices 4-1
4.1.3. Selected Components 4-1
4.1.4. Attributes 4-1

4.2. Literals 4-1
4.3. Aggregates 4-1

4.3.1. Record Aggregates 4-1
4.3.2. Array Aggregates 4-2

4.4. Expressions 4-2
4.5. Operators and Expression Evaluation 4-2

4.5.1. Logical Operators and Short-circuit Control Forms 4-2
4.5.2. Relational Operators and Membership Tests 4-2
4.5.3. Binary Adding Operators 4-2

5 June 1992 (version 4.6) i

Ada 9X Mapping Specification Table of Contents

4.5.4. Unary Adding Operators 4-2
4.5.5. Multiplying Operators 4-2
4.5.6. Highest Precedence Operators 4-3

4.6. Type Conversions 4-3
4.7. Qualified Expressions 4-5
4.8. Allocators 4-5
4.9. Static Expressions and Static Subtypes 4-5

4.9.1. Statically Matching Constraints and Subtypes [new] 4-5

5. Ada 9X Statements 5-1
5.1. Simple and Compound Statements - Sequences of Statements 5-1
5.2. Assignment Statement 5-1
5.3. If Statements 5-1
5.4. Case Statements 5-1
5.5. Loop Statements 5-1
5.6. Block Statements 5-1
5.7. Exit Statements 5-1
5.8. Return Statements 5-1
5.9. Goto Statements 5-1

6. Ada 9X Subprograms 6-1
6.1. Subprogram Declarations 6-1
6.2. Formal Parameter Modes 6-1
6.3. Subprogram Bodies 6-1

6.3.1. Conformance Rules 6-2
6.3.2. Inline Expansion of Subprograms 6-2

6.4. Subprogram Calls 6-2
6.4.1. Parameter Associations 6-2
6.4.2. Default Parameters 6-1

6.5. Function Subprograms 6-1
6.6. Parameter and Result Type Profile - Overloading of Subprograms 6-1
6.7. Overloading of Operators 6-1

7. Ada 9X Packages 7-1
7.1. Package Structure 7-1
7.2. Package Specifications and Declarations 7-1
7.3. Package Bodies 7-1
7.4. Private Type and Deferred Constant Declarations 7-1

7.4.1. Private Types 7-1
7.4.2. Private Extension [new] 7-1
7.4.3. Operations of a Private Type [originally 7.4.2] 7-2
7.4.4. Deferred Constants [originally 7.4.3] 7-2
7.4.5. Limited Types [originally 7.4.4] 7-2
7.4.6. Controlled Types [new] 7-3

7.5. Example of a Table Management Package 7-1
7.6. Example of a Text Handling Package 7-1

8. Ada 9X Visibility Rules 8-1
8.1. Declarative Region 8-1
8.2. Scope of Declarations 8-1
8.3. Visibility 8-2
8.4. Use Clauses 8-2
8.5. Renaming Declarations 8-2
8.6. The Package STANDARD 8-1
8.7. The Context of Overload Resolution 8-1

ii 5 June 1992 (version 4.6)

Table of Contents Ada 9X Mapping Specification

9. Ada 9X Tasks and Synchronization 9-1
9.1. Task Specifications and Task Bodies 9-1
9.2. Task Types and Task Objects 9-1
9.3. Task Execution - Task Activation 9-1
9.4. Task Dependence - Termination of Tasks 9-2
9.5. Protected Specifications and Protected Bodies [new] 9-2
9.6. Protected Types and Protected Objects [new] 9-3
9.7. Protected Operations, Entry Calls, and Accept Statements [originally 9.5] 9-4

9.7.1. Requeue Statements [new] 9-6
9.8. Delay Statements, Duration, and Time [originally 9.6] 9-7
9.9. Select Statements [originally 9.7] 9-7

9.9.1. Selective Wait [originally 9.7.1] 9-7
9.9.2. Conditional Entry Calls [originally 9.7.2] 9-8
9.9.3. Timed Entry Calls [originally 9.7.3] 9-8
9.9.4. Asynchronous Transfer of Control [new] 9-8

9.10. Priorities [originally 9.8] 9-9
9.11. Task and Entry Attributes [originally 9.9] 9-9
9.12. Abort of a Task; Abort of a Sequence of Statements [originally 9.10] 9-9
9.13. Shared variables [originally 9.11] 9-10
9.14. Example of Tasking and Synchronization [originally 9.12] 9-10

10. Ada 9X Program Structure and Compilation Issues 10-1
10.1. Compilation Units - Library Units 10-1

10.1.1. Context Clauses - With Clauses 10-2
10.1.2. Main Subprograms, Partitions, and Environment Tasks [new] 10-3
10.1.3. Examples of Compilation Units [originally 10.1.2] 10-4

10.2. Subunits of Compilation Units 10-4
10.2.1. Examples of Subunits 10-4

10.3. Order of Compilation 10-4
10.4. The Program Library 10-4
10.5. Elaboration of Library Units 10-4

10.5.1. Library Unit Package Categorization [new] 10-4
10.6. Program Optimization 10-5

11. Ada 9X Exceptions 11-1
11.1. Exception Declarations 11-1
11.2. Exception Handlers 11-1
11.3. Raise Statements 11-2
11.4. Exception Handling 11-2

11.4.1. Exceptions Raised During the Execution of Statements 11-2
11.4.2. Exceptions Raised During the Elaboration of Declarations 11-2

11.5. Exceptions Raised During Task Communication 11-2
11.6. Exceptions and Optimization 11-2
11.7. Suppressing Checks 11-2

12. Ada 9X Generic Units 12-1
12.1. Generic Declarations 12-1

12.1.1. Generic Formal Objects 12-2
12.1.2. Generic Formal Types 12-2
12.1.3. Generic Formal Subprograms 12-2
12.1.4. Generic Formal Packages [new] 12-3

12.2. Generic Bodies 12-4
12.3. Generic Instantiation 12-4

12.3.1. Matching Rules for Formal Objects 12-5
12.3.2. Matching Rules for Formal Private Types 12-5
12.3.3. Matching Rules for Formal Scalar Types 12-5
12.3.4. Matching Rules for Formal Array Types 12-5

5 June 1992 (version 4.6) iii

Ada 9X Mapping Specification Table of Contents

12.3.5. Matching Rules for Formal Access Types 12-5
12.3.6. Matching Rules for Formal Derived Types [new] 12-5
12.3.7. Matching Rules for Formal Subprograms [originally 12.3.6] 12-6
12.3.8. Matching Rules for Formal Packages [new] 12-6

12.4. Example of a Generic Package 12-6

13. Ada 9X Representation Clauses and Implementation-Dependent Features 13-1
13.1. Representation Clauses 13-1
13.2. Attribute Definition Clauses [originally Length Clauses] 13-1
13.3. Enumeration Representation Clauses 13-2
13.4. Record Representation Clauses 13-2
13.5. Address Clauses 13-2

13.5.1. Interrupts 13-2
13.6. Change of Representation 13-2
13.7. The Package SYSTEM 13-3

13.7.1. System-Dependent Named Numbers 13-3
13.7.2. Representation Attributes 13-3
13.7.3. Representation Attributes of Real Types 13-4

13.8. Machine Code Insertions 13-4
13.9. Interface to Other Languages 13-4
13.10. Unchecked Programming 13-5

13.10.1. Unchecked Storage Deallocation 13-5
13.10.2. Unchecked Type Conversions 13-5
13.10.3. Unchecked Access Value Creation 13-5

14. Ada 9X Input-Output 14-1
14.1. External Files and File Objects 14-1
14.2. Sequential and Direct Files 14-1

14.2.1. File Management 14-1
14.2.2. Sequential Input-Output 14-1
14.2.3. Specification of the Package Sequential_IO 14-1
14.2.4. Direct Input-Output 14-1
14.2.5. Specification of the Package Direct_IO 14-1

14.3. Text Input-Output 14-1
14.3.1. File Management 14-1
14.3.2. Default Input and Output Files 14-1
14.3.3. Specification of Line and Page Lengths 14-1
14.3.4. Operations on Columns, Lines, and Pages 14-1
14.3.5. Get and Put Procedures 14-1
14.3.6. Input-Output of Characters and Strings 14-2
14.3.7. Input-Output for Integer Types 14-2
14.3.8. Input-Output for Real Types 14-2
14.3.9. Input-Output for Enumeration Types 14-2
14.3.10. Specification of the Package Text_IO 14-2

14.4. Exceptions in Input-Output 14-2
14.5. Specification of the Package IO_Exceptions 14-2
14.6. Low Level Input-Output 14-2
14.7. Stream Input-Output [new] 14-2

14.7.1. T’READ and T’WRITE [new] 14-2
14.7.2. Predefined T’WRITE and T’READ [new] 14-3
14.7.3. Validation on T’READ [new] 14-3
14.7.4. T’WRITE and T’READ for Tagged Class-Wide Types [new] 14-4
14.7.5. The Package STREAM_SUPPORT [new] 14-4
14.7.6. Heterogeneous Input-Output [new] 14-5

14.8. Example of Input-Output 14-7

iv 5 June 1992 (version 4.6)

Table of Contents Ada 9X Mapping Specification

Index I-1

5 June 1992 (version 4.6) v

