
March 21, 1992 1

An Analysis of the
Implementation and Execution-Time

Impact of Ada 9X Real-Time Features

Thomas J. Quiggle
Gary J. Dismukes

TeleSoft
5959 Cornerstone Court West

San Diego, CA 92121

quigglet@ajpo.sei.cmu.edu

gary@telesoft.com

1.0 Introduction

This document summarizes the results of a one-month special study of proposed Ada 9X
real-time features, requested by the Ada 9X project office. The study was performed in
conjunction with TeleSoft’s Ada 9X User/Implementor contract.

Section 1 provides an overview of the document itself. Section 2 provides an overview of
the TeleSoft compiler and run-time system. Section 3 discusses a base implementation of
Protected Records that does not support Requeue, Selective Entry Call, or Asynchronous
Transfer of Control. Section 4 discusses the incremental cost of providing Requeue.
Section 5 discusses the costs associated with Selective Entry Call -- exclusive of the
implementation of an abortable final part. Section 6 discusses the implementation of
Asynchronous Transfer of Control. Section 7 summarizes our findings.

1.1 Purpose

This document serves to identify the costs associated with several proposed Ada 9X
features that address requirements for real-time applications. Two distinct forms of cost
are considered. First is the cost incurred by Ada vendors to implement the proposed
features. This cost can be further broken down into the one-time cost associated with
modifications made to components of the compilation and run-time environment that are
common to the vendor’s product line, and the recurring costs that are associated with
modifications to components that are specific to each targeted platform. Second is the
execution-time cost incurred by users of the proposed feature. This second cost is of
critical importance to users building embedded real-time applications.

March 21, 1992 2

1.2 Intended Audience

This document is directed at members of the Ada 9X Project office, the Mapping Team,
and reviewers of the proposed language features. Distribution need not be restricted, as no
TeleSoft proprietary information has been included. It is assumed that the reader has some
degree of familiarity with Ada implementation issues. No knowledge of TeleSoft’s
specific implementation is assumed.

1.3 Scope

This document provides an overview of the costs associated with Protected Records,
Requeue Statements, Selective Entry Call (without an abortable final part), and
Asynchronous Transfer of Control, as described in version 4.0 of the Mapping Document.
Although reference is made to various design considerations associated with these
features, this document is not intended to serve as a detailed design document for the
implementation of the features discussed.

1.4 References

ACM, Ada Performance Issues, a Special Edition of Ada Letters, V 10, N. 3, Winter 1990.

IEEE, “Real-time Extension for Portable Operating Systems,” P1003.4/D10, February 6,
1991.

IEEE, “Threads Extension for Portable Operating Systems,” P1003.4a/D5, December,
1990.

Intel, “iRMK I.2 REAL-TIME Kernel Reference Manual,” 1988.

Intermetrics, “Draft Ada 9X project Report - Ada 9X Mapping Document Volume II,
Mapping Specification,” December 1991.

Intermetrics, “User/Implementor Implementation Modules.”

Ready Systems, “RTAda Real-Time Ada User’s Guide,” Document811112002, March
1990.

Software Components Group, “pSOS+/68K User’s Manual,” Document KX68K-MAN,
1989.

Software Components Group, “Timing Reference for pSOS+/68020”

TeleSoft, “TeleAda-Exec Users Manual Version 1.0 MC68020/30,”

March 21, 1992 3

1.5 Definitions

RSP: Run-time Support Packages - a collection of TeleSoft-provided packages that
support the execution of Ada programs. Calls to the RSP are generated by the compiler,
and are not present in the source representation of an application program.

target: The computer on which a compiled Ada program is intended to execute.

target architecture: An abstract target machine characterized by the instruction
set it executes. For example, TeleSoft’s Sun3-host compiler and Vax/E68 cross compiler
both generate instructions for the Motorola MC68020 target architecture.

target environment: The collection of software components that execute on a
target machine independent of the Ada program. For example on a Sun Host, the target
environment consists of the SunOS Unix implementation and additional (optional) layered
products.

2.0 TeleSoft Compilation and Run-Time System Overview

In order to evaluate the applicability of TeleSoft’s cost estimates to other compilation and
run-time systems, and to understand the distinction between one-time and recurrent costs
for TeleSoft, we offer the following brief overview of TeleSoft’s Compilation and Run-
Time System.

2.1 Compiler Overview

The TeleSoft compiler is a single Ada program that operates in three phases: the Front
End, the Middle Pass, and the Code Generator. The Front End accepts Ada source code as
input and produces a high-level, machine-independent intermediate representation of the
input text known as High Form. The Front End performs syntactic and semantic analysis
and provides error diagnostics. The Middle Pass accepts the High Form input and
produces a low-level, machine-independent graphical representation called Low Form.
The Code Generator translates Low Form into object modules for a specific machine
architecture.

The Front End and Middle Pass are common to all TeleSoft compilers (although each does
contain a single parameterization package whose body is target-dependent). The Code
Generator is unique to each targeted architecture. The cost of performing modifications to
the Front End and Middle Pass are incurred once for the entire TeleSoft product line.
Modifications to the Code Generator must be performed for each targeted architecture.

2.2 Run-Time System Overview

TeleSoft’s Ada Run-time System is divided into three interdependent components:

• Target-Dependent RSP

March 21, 1992 4

• Kernel

• Target-Independent RSP

The relationship between these components follows the classic “onion model” as shown
below:

Each of these layers is described briefly below:

• HW: The hardware (and software) environment targeted. This layer may consist of a
bare board, an embedded target running a real-time executive, or a host computer
running a full-featured operating system. The facilities available at this layer dictate the
amount of work required to implement the next layer.

• TD-RSP: The Target-Dependent run-time Support Packages (TD-RSP) defines a
common virtual machine that the surrounding layers interface to. The implementation
of the TD-RSP is unique to each platform upon which Ada is targeted.

• Kernel: Provides operations on abstract threads of control. The operations provided
include creation, destruction, suspension, resumption, priority manipulation, etc. The
operations provided are the minimal set required for the implementation of Ada
tasking, and are a subset of the facilities generally provided by a real-time executive or
a general-purpose operating system.

• TI-RSP: The Target-Independent run-time Support Packages (TI-RSP) provide run-
time support for implementing various Ada language constructs. Constructs
implemented by the TI-RSP include various attributes (e.g. ’Image, ’Width), the NEW
operator for heap allocation, and all tasking operations. The majority of the TI-RSP is
dedicated to the implementation of Ada tasking. Calls into the TI-RSP are inserted by

HW

TD-RSP

Kernel

TI-RSP

Application

Compiler Inserted Calls

March 21, 1992 5

the compiler into the Low-Form intermediate representation of the application
program. The tasking portion of the TI-RSP interface is a high-level interface that is
similar to the ARTEWG MRTSI interface.

• Application: This layer represents the user’s application program.

The Target-Independent RSP constitutes the majority of the run-time system, and is
further subdivided into tasking support and non-tasking support. The cost of performing
modifications to the TI-RSP are incurred once for the entire TeleSoft product line.
Modifications to the TD-RSP must be performed for each target environment.

The Kernel is neither a component of the TD-RSP nor TI-RSP. There exists a standard
implementation of the Kernel interface that relies exclusively on the functionality
provided by the TD-RSP, but adaptors are encouraged to provide alternate
implementations for target systems where appropriate. Such adaptations support two
distinct classes of target environments: those in which the Ada run-time system has
exclusive control over the allocation and scheduling of processor resources, and those in
which the Ada run-time system must coexist with a foreign scheduler such as a host
operating system or real-time executive. The former class of systems represents a true bare
target, in which only a single Ada program resides. The latter is often used for applications
which require multiple Ada programs, or mixed-language programs. TeleSoft believes the
majority of all current embedded Ada applications (for all vendors’ compilers) utilize
some form of foreign scheduler. Continued efficient support of this class of systems is of
vital interest to TeleSoft and the Ada community.

The TeleSoft RSP was specifically designed to facilitate both classes of systems by
isolating all scheduling operations into a Kernel package that is separate from the
packages that implement the various Ada semantic operations. Implementations of the
Kernel package exist for both bare targets and for targets running a foreign scheduler. A
vital consideration for the design of Ada 9X real-time features is the ability to preserve the
separation of Ada semantic operations from Kernel facilities. Only by doing so can we
preserve the ability to adapt the Ada run-time system to a new scheduler in a cost effective
manner.

3.0 Protected Records

Protected Records is the feature that TeleSoft has the greatest experience with. To date, we
have implemented a subset of the protected records functionality that is consistent with the
Implementation Module. Summarized below is the content of that implementation and the
effort expended.

3.1 Initial Implementation

Each protected record type declaration defines a composite type and operations on that
type. The compiler extends the protected record’s component list to include a component
of type Protected_Record_Control_Block (hereafter referred to as PRCB), or an access to

March 21, 1992 6

the PRCB (see below). Operations on the protected record type are provided via the
protected operations defined in the protected record type declaration. Protected
operations may be functions, procedures, or entries.

3.1.1 In-line vs. Out-of-line Locking Operations

In the implementation of the protected operations, run-time actions must both precede and
follow the user-provided sequence of statements. Two alternative implementation models
were examined.

• Model 1: The body of a protected operation is generated as a directly-callable
subprogram containing prologue and epilogue calls to run-time service routines that
perform the necessary semantic actions for locking, barrier evaluation, etc.

• Model 2: Calls to a protected operation are implemented as calls to a run-time
service routine. This run-time routine accepts as parameters a pointer to a parameter
block for the current call and an access to a subprogram containing the actual protected
operations. The run-time routine performs the necessary prologue (locking) operations,
indirectly calls the subprogram containing the protected operations, and upon return,
performs the necessary epilogue operations (barrier evaluation, queued caller
processing, and unlocking).

Early experience with prototypes of the above models indicated that Model 1 significantly
out performed Model 2 for protected subprogram calls and for protected entry calls that do
not queue. Consequently Model 1 was adopted. A hybrid approach in which procedures
and functions use Model 1 and entries use Model 2 was considered, but rejected in the
interest of simplifying the implementation. This decision was made in conjunction with
completing the Implementation Module for Protected Records, which did not include any
form of Selective Entry Call (SEC). This decision was later revisited when evaluating the
Implementation Module for SEC. The choice of directly-callable entry bodies with out-of-
line RSP calls for the prologue and epilogue actions proved to hinder the implementation
of SEC. Consequently protected record entries were re-implemented in conjunction with
our run-time prototype of Selective Entry Call.

3.1.2 Allocation of Protected Record Control Blocks

Some systems require that PRCBs be allocated disjoint from the user-declared
components of a protected object. At least three circumstances result in such a
requirement: 1) segmented architectures in which the run-time system resides in a
segment distinct from the application program due to segment-size limitations, 2) systems
with security requirements mandating that all run-time system data structures be protected
from inadvertent or malicious modification by applications programs, and 3)
multiprocessor systems in which the memory architecture requires that “test and set” cells
used for multiprocessor locks must be allocated from specific regions of memory (for
example, specific pages in which cache write-through or cache snooping is guaranteed).

In such disjoint-memory systems, the allocation and initialization of the PRCB must be
performed by the run-time system. An access value is returned from the run-time system

March 21, 1992 7

to the application program for subsequent use in requesting operations on the protected
record object. This access value may not be meaningfully dereferenced from the context in
which the application code executes. Such access values can be controlled by the run-time
system; specifically, the access value can be checked for validity and access rights prior to
operating on the designated PRCB.

For systems where the application and run-time system share data visibility, the actual
PRCB could be declared as a component of the protected object. In this case, the space for
the PRCB can be allocated contiguous with the user-declared components of the protected
object, and the compiler can perform the initialization of the PRCB in the same manner
that it would perform default initialization of the user-declared components. Access values
can still be used for passing PRCB parameters to the run-time system; thus providing a
common compiler/run-time interface for both uniform- and disjoint-memory targets.

For the purposes of the initial implementation, the PRCBs were dynamically allocated and
initialized by the run-time system. This corresponds to the more restrictive case wherein
the application code and run-time system do not share data addressability. The
motivations for selecting this allocation model are two-fold: first to insure that the design
takes into consideration disjoint memory architectures; and second, to simplify the
compiler implementation by eliminating the need to understand and initialize the PRCB
structure.

3.1.3 Call-Outs

TeleSoft’s 68020 Code Generator utilizes a local display to reference up-level data
objects. A local display is only built for subprograms that make up-level references and/or
call subprograms that make up-level references. If a display is required, it is copied from
the caller’s local display and extended to include an entry for the caller’s local frame. The
subprogram’s lexical level determines the size of the display copied. Elements of the local
display are treated like any other local data item, and may be allocated to registers. A call
to a lex-level zero subprogram will never result in the copying of the caller’s local display.
Consequently, an indirect call to an entry body or barrier evaluation subprogram via a lex-
level zero routine must pass an additional parameter from which a local display can be
built. The call-out mechanism will vary from code-generator to code-generator.

To handle call-outs from the TI-RSP (an interface consisting of lex-level zero
subprograms) to application subprograms, a new target-dependent interface was created.
This interface provides the necessary indirect-call capability to call barrier evaluation
functions and entry bodies. The implementation for the 68020 required slightly less than a
day of effort.

3.2 Implementation Costs

The following sections summarize the effort expended to implement protected records
exclusive of selective entry call and asynchronous transfer of control.

March 21, 1992 8

3.2.1 Compiler Implementation

The Front End changes to support Protected Records consisted primarily of changes to the
high-level symbol table to represent a protected unit and its corresponding protected type.
Due to the similarity with record types and task types, we were able to reuse a significant
amount of existing code to support the creation of the new symbols. There were also
changes to support calls to protected operations and references to protected components,
which required some differences in representation relative to task entry calls and normal
record component references.

The modifications to the Middle Pass were more extensive, but it was possible to
encapsulate the majority of new code within two new packages. One package performs all
symbol table and low-level intermediate code generation specific to protected records and
operations. The other package provides functions for generating the run-time calls
required to support PRCB initialization and processing of protected operations (prologue,
epilogue, etc.). As in the Front End, a high degree of reuse of existing code was possible
by building on the existing support for packages, subprograms, and records. A protected
unit is represented essentially as a package with an associated record type where the
package provides the protected operations and the protected components are associated
with the record type.

The combined Front End and Middle Pass design and implementation effort for the
protected records prototype took approximately 20 person-weeks. Note that no changes
were required to the back-end (code generation) phase of compilation. We estimate that
the effort to transition the prototype to a complete implementation is moderate. One set of
changes we anticipate making in this transition would be to convert the support for
protected entry calls to use the out-of-line call model described earlier.

3.2.2 Run-time Implementation

The implementation of protected records within the run-time system primarily consisted
of defining the Protected Record Control Block (PRCB) and the prologue and epilogue
operations that act upon it. This work was minimally impactive of the existing run-time
system code. The areas in which the existing run-time code was impacted are:

• The addition of checks to all potentially-blocking run-time service calls to determine if
the calling task is executing a protected operation

• Abort deferral for tasks executing protected operations

• Addition of several components to the Task Control Block

The design and implementation of protected records took approximately10 person-weeks
of effort, and increased the overall size of the target-independent tasking run-time by
approximately 20% (based on a raw SLOC count).

March 21, 1992 9

3.3 Execution-Time Costs

The initial implementation of Protected Records was performed in the environment that
traditionally has yielded the highest performance for Ada 83 tasking. Specifically, the
implementation was built using TeleSoft’s standard Ada Kernel with the application
running in supervisor mode. In this mode of operation, modifications to a task’s Kernel
state (such as the task’s priority or interrupts enabled state) can be executed without
change in processor mode, and can be in-lined into the appropriate TI-RSP routine by the
global optimizer. Following this approach, we attempted to evaluate the best attainable
performance for protected records. Table 1.0 summarizes the performance of various
constructs when executed on a Motorola MVME135-1 embedded target (20 MHz 68020,
zero wait-state).

The above results indicate that Protected Records significantly outperform active tasks in
this environment. However, we anticipate significant performance degradation when
moving to other environments if the same ceiling priority mechanism is used for mutual
exclusion. On certain target systems in which scheduling actions are performed by a
foreign kernel, the implementation of ceiling priority locks for protected records will
require calls into the kernel to modify the task’s priority and time-slicing status.

As a case in point, if implemented in conjunction with the Software Components Group’s
pSOS+ real-time executive, each protected operation would require a minimum of 4
Kernel calls:

 1 Raise the caller’s priority to the ceiling (T_SETPRI = 44.4 uSec)

 2 Disable time-slicing for the task (T_MODE = 19.0 uSec)

Test Name Operation Tested uSec

pr000001 PR Function Call 13.6

pr000002 PR Procedure Call - PR has no entries 14.9

pr000003 Simple PR Entry Call - PR has only one entry 33.9

pr000004 Simple PR Entry Call - PR has two entries 39.8

pr000005 Simple PR Entry Call - PR has ten entries 40.7

t000001 Task Entry Call and return. 1 task, 1 entry, no select 107.2

t000002 Task Entry Call and return. 1 task in pkg., 1 entry, no select 108.8

t000003 Task Entry Call and return. 2 tasks, 1 entry each, no select 109.8

t000005 Task Entry Call and return. 10 tasks, 1 entry each, no select 108.2

t000007 Task Entry Call and return. 1 task, 1 entry, null accept body 72.8

TABLE 1. Task and Protected Record Execution Times

March 21, 1992 10

 3 Lower the caller’s priority to its previous value (T_SETPRI = 44.4 uSec)

 4 Re-enable time-slicing for the task (T_MODE - 19.0 uSec)

This represents an additional cost of 126.8 uSec for the required Kernel operations when
executing on a 20Mhz 68020 processor. The resulting execution times for protected
operations are expected to approach the execution time for a rendezvous with an active
task, thereby obviating much of the advantage of protected records. Similar results are
expected for implementations built with other popular real-time executives.

For such target environments, we propose to use a locking mechanism built on a
potentially blocking lock object whose state is maintained in user space (and therefore
efficiently accessible). We are encouraged by the recent move of the specific ceiling
semantics for mutual exclusion of protected operations to the real-time annex, thus
permitting the use of an efficient locking mechanism in an environment where priority
adjustments are prohibitively expensive.

4.0 Requeue

4.1 Implementation

Our existing implementation only addresses requeue for protected records. Requeue
statements from within accept statements have not been implemented. Based on a limited
evaluation, we anticipate that the required changes for requeue on a task entry will be
small.

4.1.1 Compiler Implementation

Given an existing implementation of the core protected records features, the incremental
cost of adding compiler support for requeue is quite small. In our prototype
implementation, both features were implemented together. We have no data on the cost of
implementing requeue separate from the core protected records features. We believe that
the requeue component of the implementation constituted at most 10 percent of the overall
implementation cost. For the compiler, requeue is implemented as a call to a run-time
service routine that closely parallels the implementation of an entry call.

4.1.2 Run-time Implementation

Requeue is implemented entirely within the Target-Independent RSP, and as such, its
implementation is a one-time cost. The implementation of Requeue is very similar to that
of a normal protected record entry call. First the requeue operation checks to see if the
destination entry belongs to the same protected record as the surrounding entry body. If so,
the necessary prologue code has already been executed, otherwise the prologue operations
for the destination entry are performed.

March 21, 1992 11

Next the entry barrier is evaluated. If the barrier is open, the epilogue code for the outer
entry call is performed (in case the task blocks on a requeue for the destination entry) and
the entry body is executed. Upon return from the entry body, the epilogue code for the
destination entry is performed.

The requeue operation sets a flag in the caller’s TCB indicating that the entry call was
requeued. This flag is checked by the epilogue code for the original entry call to determine
if the epilogue for the outer entry has already been performed by an inner requeue.

4.2 Execution-Time Costs

The need to check for a requeue when returning from an entry body introduces a
distributed cost to the implementation of protected record entry calls. This overhead is on
the order of a single test and branch, plus the cost of maintaining the caller information in
the PRCB. We do not yet have performance figures for the execution of a requeue
statement as implemented in our prototype. Based on examination of the prototype code,
we anticipate that the execution-time for a requeue operation will be slightly greater than
the cost for a normal entry call. The variation is not expected to exceed 10 per-cent.

5.0 Selective Entry Call

This section describes the implementation of Selective Entry Call in the absence of an
abortable final part. Abortable final parts are discussed separately in section 6.0.

5.1 Implementation

The implementation of Selective Entry Call is very similar to that of Selective Waits in
Ada 83. The compiler generates code that initializes a data structure describing the
alternatives to the select statement and passes the data structure to a run-time service
routine for further evaluation. The run-time routine evaluates the alternatives relative to
the current state of the called entries and returns an integer value indicating which
alternative was selected for execution. If no alternative can be immediately selected, the
run-time service routine will block the executing task until one of the alternatives can be
selected. The value returned is used in a case statement to select the appropriate statement
sequence to execute following the entry call. For example, the select statement:

March 21, 1992 12

select
when condition2 =>
 server1.entry1(...);
 statement_sequence1;
or
when condition2 =>
 server2.entry2(...);
 statement_sequence2;
or
delay 1.0;
 statement_sequence3;
end select;

would be translated into something of the form:

declare
 Header : Selective_Call_Header(Num_Alternatives => 3);
begin
 <initialize components of the selective call header>
case RTS.Evaluate_SEC(Header) is

when 1 => statement_sequence_1;
when 2 => statement_sequence_2;
when 3 => statement_sequence_3;

end case;
RTS.Complete_Select(Header);

exception
when others => RTS.Complete_Select(Header);

raise;
end;

5.1.1 Compiler Implementation

For purposes of this study, a prototype implementation of selective entry calls was
undertaken that involved changes only to the run-time support packages. No compiler
modifications to support this feature have been made to date. The compiler
implementation is not believed to be difficult, however, since the model for selective entry
calls is so closely analogous to that for Ada 83 selective wait statements.

The Front End support for selective wait statements would be generalized to allow entry
call alternatives and abortable final parts, which will also subsume the Ada 83 conditional
and timed entry call constructs. It also appears that the Middle Pass implementation will
be relatively straightforward to extend to support selective entry calls due to the strong
similarities with selective wait statements. It should be possible to parameterize the
existing Middle Pass support for selective wait to allow for the new forms of alternatives
and to generate the run-time calls appropriate for the selective entry call case.
Alternatively, the selective wait generation code could be duplicated and specialized to
selective entry calls, including reusing the existing Middle Pass support for the special

March 21, 1992 13

cases of Ada 83 conditional and timed entry calls. In any event, we estimate the compiler
adaptation cost to be easy or moderate, probably on the order four person-weeks of effort.
Note that this does not include the Middle Pass effort to support abortable final parts.

5.1.2 Run-time Implementation

In our prototype implementation, the existing data structures for describing alternatives to
Ada 83 selective wait statements have been generalized to include alternative forms for
entry call alternatives. The previous selective wait header has been reformulated in terms
of the new more general form. An additional header type has been introduced for selective
entry calls. Some of the original type names have been modified to more closely parallel
the nomenclature used in the Mapping Document.

The implementation of selective accept statements was derived from the existing support
for Ada 83 selective wait statements. The implementation was modified to examine
alternatives in their lexical order, instead of the “round-robin” order previously used. This
change represents a minor simplification.

The existing support for conditional and timed entry calls will be retained. The Middle
Pass will recognize selective entry calls containing a single entry call alternative and one
delay alternative or an else part, and implement such calls exactly as in their Ada 83
counterpart. We believe that the more restrictive implementation of the Ada 83 constructs
will significantly out-perform an equivalent implementation of the more general selective
entry call mechanism. We wish to prevent an unexpected degradation in performance for
syntactically identical constructs when user’s upgrade from Ada 83 to Ada 9X.

5.1.2.1 Allocation of Queue Elements

For the prototype implementation, we adopted the “agent task” approach proposed by
Tucker Taft in electronic mail to the User/Implementor teams. This mechanism avoids the
need for a client task to reside on more than one entry queue when executing a selective
entry call. Instead, a separate “agent” waits on an entry queue on behalf of the task
executing the selective entry call. The agent task consists of a minimal TCB that does not
correspond to a thread of control, but does contain linkage and state information used in
processing a rendezvous. The agent task replaces the QEL construct proposed in the
Implementation Module and has the advantage of eliminating an intermediate queue
element for normal entry calls (i.e., those not part of a selective entry call).

To preserve the ability to execute in disjoint memory architectures, the allocation and
management of agent TCBs is performed by the run-time system, not the compiler. In our
prototype implementation, we pre-allocate a fixed number of agent TCBs at elaboration
time and place them on a free list. As agent TCBs are needed, the free list is examined for
available agents. If none are available, a new agent is allocated from the global heap.
When an agent is no longer needed, it is returned to the free list. The maximum size of the
free list is bounded by a run-time constant. When an agent task is returned to the system
and the free list contains the maximum number of reserved agents, space for the returned
agent is simply returned to the global heap. In a production compiler, the initial and

March 21, 1992 14

maximum free list sizes would be governed by configuration parameters, and the
allocation of additional agents from the global heap could be optionally replaced by a raise
of STORAGE_ERROR.

5.1.2.2 Impact on Accept Statements and Entry Bodies

The previously existing support for accept statements and entry bodies contained checks
to determine if an enqueued caller was executing a timed entry call that had expired. Upon
encountering a caller that has timed out, the acceptor simply ignores the entry call and re-
examines the queue. This check has been compounded with a check to determine if the
caller is an agent enqueued on behalf of a selective entry call, and if so, execute the
appropriate code to claim the select header prior to initiating the rendezvous. Similar to
the processing of an expired timed entry call, if the select header cannot be claimed the
caller is disregarded and the entry queue re-examined. This check for a selective entry call
need not introduce a distributed cost for normal entry calls beyond what already exists for
timed entry calls.

In the Ada 83 implementation, upon conclusion of an accept statement, any exception
raised within the accept body is latched in the caller’s TCB. The calling task is then made
eligible for execution. This exit code for a rendezvous has been modified to determine if
the caller is an agent executing on behalf of a selective entry call. If so, additional
operations are required to resolve potential race conditions with the task executing the
selective entry call, and to insure that the true caller (as opposed to the agent) is made
eligible to execute. This additional check adds a small distributed cost to all rendezvous.

5.1.2.3 Resolution of Race Conditions

Since selective entry calls are permitted to contain entry call alternatives for protected
record entries, the protection of the header components cannot use the same (potentially
blocking) mutex mechanism currently used for TCBs. To do so would violate the non-
suspension rule for execution within a protected record when servicing a queued entry call
for a caller executing a selective entry call. The Implementation Module suggests the use
of an atomic test-and-set cell to resolve race conditions between multiple servers
attempting to provide service for the same selective entry call, coupled with a signal/wait
mechanism to resolve race conditions between the winner of such a race and the task
executing the selective entry call. A new target-dependent package was created to provide
access to an architecture-specific atomic test and set instruction. TeleSoft’s kernel
interface does not provide an event mechanism. Instead, we utilized interrupt lockout to
protect several critical sections in which the winners of race conditions are determined. A
better long-term solution is desirable.

5.1.2.4 Re-Implementation of Protected Record Entries

As discussed in section 3.1.1, the initial implementation of protected records entries
generated a directly callable subprogram that contained out-of-line calls to RSP prologue
and epilogue routines. This model does not scale to selective entry calls in which a portion

March 21, 1992 15

of the prologue routine must be performed prior to committing to the entry call, and the
parameters to the entry call must be evaluated prior to the execution of a run-time service
routine that selects the alternative to execute. Consequently, the implementation of
protected record entries was modified to use a model in which the entry body is not
directly called in response to an entry call statement, but is called indirectly by the run-
time system after executing the appropriate prologue code. The prologue code for a simple
entry call differs from that of a selective entry call in that there is no need to claim an
intermediate select header for a simple call. Furthermore, if a simple entry call must
queue, the executing task waits directly on the entry queue, whereas for a selective entry
call a separately allocated agent waits on the entry queue.

5.1.2.5 Run-Time Implementation Cost

The prototype implementation took approximately 2 person weeks of effort plus an
additional week to re-implement protected record entries. As a rapid prototype, the
implementation has not undergone the normal process of design review and code
inspection. It is likely that the resulting code contains defects not uncovered by unit test,
and that performance improvements are possible. We would expect a more formal
implementation to take an additional 6-8 weeks of effort, including documentation and
reviews. This is a one-time cost for modification to the target-independent RSP.

The introduction of new target-dependent functionality to implement the claim
mechanism results in a recurring cost that will be incurred for each target. This cost should
be quite small. It should be possible to implement the necessary functionality in only a few
days.

5.2 Execution-Time Costs

Although the implementation of Selective Entry Call closely resembles that of the Ada 83
Selective Wait, the introduction of intermediate queueing agents, coupled with the
additional logic to resolve races that do not exist for Selective Wait, introduces significant
additional overhead. Table 2.0 summarizes the execution times for various forms of
selective entry calls and selective accepts.

Test Name Operation Tested uSec

pr000006 Selective Entry Call - PR has two entries, alternately open 249.2

pr000007 Selective Entry Call - PR has ten entries, first is open 294.5

pr000008 Selective Entry Call - PR has ten entries, last is open 1723.4

t000004 Task Entry Call and return. 1 task, 2 entries in select 148.2

t000006 Task Entry Call and return. 1 task, 10 entries in select 275.1

TABLE 2. Selective Entry Call Execution Times

March 21, 1992 16

The large differential between tests pr000007 and pr0000008, and between t000010 and
t000011 indicate that the overhead associated with adding and removing agents from entry
queues is significant.

6.0 Asynchronous Transfer of Control

6.1 Implementation

The implementation of an abortable final part adds complexity to the selective entry call
implementation by adding the requirement that the case statement generated for
controlling selection among alternatives may need to be re-executed when an abortable
final part is initially selected and then aborted.

We have examined two possible mechanisms for aborting a sequence of statements and
returning control to the appropriate event alternative. The first involves propagating the
abort event in a manner similar to the existing support for exception handling. The second
involves saving the state of task prior to executing the generated case statement, and
directly restoring that state when the sequence of statements is aborted. Hereafter we will
refer to the first model as the propagation model, and the second as the long-jump model.
Each of these models is detailed below.

Consider a select statement of the form:

t000009 Selective Entry Call. two alternatives, alternately open 207.1

t000010 Selective Entry Call, ten alternatives, first always taken 307.5

t000011 Selective Entry Call, ten alternatives, last always taken 1348.2

Test Name Operation Tested uSec

TABLE 2. Selective Entry Call Execution Times

March 21, 1992 17

select
when condition2 =>

server1.entry1(...);
statement_sequence1;

or
when condition2 =>

server2.entry2(...);
statement_sequence2;

then abort
 statement_sequence3;
end select;

6.1.1 The Propagation Model

For the propagation model, we would introduce additional control flow in the form of a
loop statement that is exited when the abortable final part completes successfully or one of
the entry call alternatives is executed. The loop is repeated if an abort propagates out of
the abortable final part. This additional control flow is shown by the following pseudo-
code:

declare
 SEC_Header : Header_Type;
begin
 <initialize components of selective entry call header>
loop

case RTS.Evaluate_SEC(Header) is
when 1 => statement_sequence_1; exit;
when 2 => statement_sequence_2; exit;
when 3 =>
begin

 statement_sequence_3;
exit;

exception
when abort => null;
when others => raise;

end;
end case;

 end loop;
RTS.Complete_Select(Header);

exception
when others => RTS.Complete_Select(Header);

raise;
end;

In this model, the abandonment of the abortable final part is expressed in terms of
exception propagation. It is already the case that, when an exception propagates through a

March 21, 1992 18

scope containing dependent tasks, handlers are inserted by the compiler to call the
necessary run-time routines to await dependent task termination. Other forms of
finalization are also handled in this manner. The same mechanism can be used for the
propagation of abort events. However, the implementation cannot use a normal Ada
exception for performing the abort propagation, as such an exception could be caught and
handled by an others clause in an exception handler contained within the abortable final
part. Instead, we propose that the compiler-inserted handlers be specially marked to
distinguish them from user-supplied handlers. The propagation of an abort event would
only execute handlers that are so marked. The propagation of exceptions would continue
to execute both classes of handlers.

The Middle Pass of the compiler already classifies exception handlers as being user-
supplied or compiler-generated and includes this classification in the Low-Form
intermediate representation. However the existing 68020 code-generator does not make
use of this classification information. The Code Generator would need to be modified to
include the classification information in the exception tables produced in the generated
object code. We believe this to require only a small amount of effort. A special abort
propagation routine would be needed. This routine could be readily derived from the
existing exception propagation code. The effort required for other code generators may
vary.

In this model, all finalization operations (including awaiting dependent task termination)
will be automatically performed as a consequence of the propagation of the abort event.
The initiation of asynchronous transfer need only invoke the abort propagation routine.
Details of how abort initiation could be performed by the run-time system are described
later.

6.1.2 The Long-Jump Model

The Long-Jump abandonment mechanism does not require additional control constructs,
but does require an additional run-time service call to save the state of the executing task
prior to executing the selective entry call. The code required would resemble the
following:

March 21, 1992 19

declare

 SEC_Header : Header_Type;
begin
 <initialize components of selective entry call header>

setjmp(Header.Saved_State);
case RTS.Evaluate_SEC(Header) is
when 1 => statement_sequence_1;
when 2 => statement_sequence_2;
when 3 => statement_sequence_3;

end case;
RTS.Complete_Select(Header);

exception
when others => RTS.Complete_Select(Header);

raise;
end;

In the above pseudo-code, the state-saving operation is defined in terms of the common
Unix setjmp primitive, and for Unix targets the available setjmp operation is sufficient.
For non-Unix targets, the equivalent mechanism will need to be created from scratch. Note
that the saved state is stored in the select header so it can be made available to subsequent
run-time routines that are used in implementing asynchronous transfer of control.

The longjmp operation that corresponds to the setjmp would be performed by the run-time
system in implementing the abandonment of an abortable final part. Since the stack cannot
be carved back prior to finalization, this longjmp cannot be issued until all necessary
finalization has been performed on interior scopes.

A final selection of the appropriate mechanism awaits the completion of the design for
finalization.

6.1.3 Run-time Implementation

The run-time implementation of asynchronous transfer of control can be divided into four
distinct operations:

1. The processing performed by the task executing the selective entry call to evaluate the
select alternatives and initiate the abortable final part.

2. The processing performed by a server accepting an open entry call alternative (or delay
alternative expiring) for a selective entry call with abortable final part.

3. The mechanism used by a server to effect the abandonment of the abortable final part.

4. The processing performed by the task executing the abortable final part to effect the
asynchronous transfer.

Each of these operations is described below.

March 21, 1992 20

6.1.3.1 Processing of the Selective Entry Call

The processing of the selective entry call containing an abortable final part proceeds
exactly like the processing of a selective entry call that does not contain an abortable final
part. The alternatives are processed in the order given. If any event alternative can be
immediately selected, it is selected and the abortable final part is not executed. If no
alternative can be immediately selected, the select header is updated to indicate that the
calling task is executing an abortable sequence of statements, and the value returned by
the run-time service routine indicates that the abortable final part is to be executed. We
estimate that the additional cost to implement the processing of an alternative for an
abortable final part will not exceed one person-week.

6.1.3.2 Selection of an Event Alternative

When a queued entry call is accepted, the server executing the accept statement (or entry
body) must check the claimed select header to determine if the calling task is executing an
abortable final part. If so, the server must initiate the abandonment of the abortable final
part by the caller. The mechanism used to perform this initiation is discussed in the
following section.

TeleSoft’s Kernel interface does not contain provisions for modifying non-Kernel data
structures upon expiration of a delay request. The existing facilities only provide for the
timed suspension of a task requesting a delay and the canceling of a timed suspension by
another task. We have limited our kernel interface to these operations because we believe
that these facilities can be supported by a wide variety of schedulers (our experience to
date supports this belief).

On many systems, it is impossible for a task to be both executing and receive
asynchronous notification of delay expiration. For such systems, the presence of a delay
alternative for a selective entry call will either require the creation a high-priority agent
task to delay on behalf of the task executing the selective entry call, or the implementation
will have to resort to a polling scheme. Neither alternative is very attractive.

The necessary modifications to the run-time system to initiate abort upon selecting an
entry call alternative are expected to incur a one-time cost of less than one person-month
to implement. The modifications to support initiation of abort upon expiration of a delay
alternative involve a fundamental change to the Kernel interface to permit a kernel
operation to invoke an Ada semantic operation. This change would require several person-
months.

6.1.3.3 Notification of Asynchronous Abort

The mechanism used to notify a task of a pending abort depends heavily on the
environment in which the application will execute. As discussed in section 2.2.1, TeleSoft
supports target environments in which the Ada run-time system has complete control over
task scheduling, as well as environments in which task scheduling is performed by a
foreign scheduler. In the former environment, it is possible for the implementation of

March 21, 1992 21

Asynchronous Transfer of Control to access the saved state of a suspended task and to
force the task to resume operation at a location other than that at which the task was last
executing. In the second class of systems, the saved execution state of a task is generally
not available to the Ada run-time system, so some alternative mechanism for initiating
ATC must be developed.

For systems in which the Ada run-time system has control over task context switching, the
saved state of an aborted task can be modified such that when the task resumes execution
it will begin executing at a routine that initiates the asynchronous transfer.

For systems in which scheduling is performed by an operating system or executive that
supports inter-task signalling (e.g. POSIX), the propagation of an abort will be initiated by
sending the aborted task a signal that is reserved for this purpose. The signal handler will
initiate the asynchronous transfer.

Many existing real-time executives do not provide a mechanism for inter-task signaling.
Examples of such executives include Intel’s iRMK, Ready System’s VRTX/ARTX, and
TeleSoft’s TeleAda-Exec. Software Components Group’s pSOS+ does provide inter-task
signaling, but upon completion of a signal handler there is no facility to resume execution
of the signaled task at other than the location where it was executing when the signal was
delivered. For all of these systems, and other similar systems, the only feasible approach
to initiating an ATC is to poll at specific points within the run-time system for pending
ATC requests. This effectively renders the ATC facility useless for such systems, since
there is no guarantee that the abortable final part will ever reach a run-time call. TeleSoft
believes that these systems represent an important class of targets for Ada execution.

Given the variations in the available notification mechanisms, the implementation will
require the introduction of a new target-dependent interface to permit task-to-task
signaling of pending aborts. Additionally, polling points must be optionally included in to
the run-time system to facilitate those targets that can not support inter-task signaling. The
one-time cost of defining the target-dependent notification mechanism, and adding the
necessary notification to the processing of all event selection routines, is estimated to take
approximately one person-month. This estimate takes into consideration the considerable
documentation requirement for introduction of new TD-RSP interfaces. The recurring cost
of implementing a notification mechanism will vary widely by target.

6.1.3.4 Abandonment of the Abortable Final Part

Once the task executing the abortable final part receives notification of a pending abort
action (via one of the mechanisms described in section 6.2.3.3) it must initiate the
abandonment of the abortable sequence of statements. The exact mechanism used depends
on the model selected for finalization.

If the propagation model is used, control is transferred to the abort propagation routine as
soon as the pending abort operation is detected. All necessary cleanup is performed
automatically as the abort propagates through any and all scopes that contain finalization
handlers. The abort propagates back to the handler inserted by the compiler for the

March 21, 1992 22

abortable sequence of statements, and the task resumes execution at the point of the
handler. The loop statement is not exited, so the select statement will be executed a second
time. The select header will have been updated to reflect that one of the event alternatives
has already been selected, so the second execution of the run-time service routine that
evaluates the select alternatives will immediately return the number of the selected
alternative. The execution-time cost of propagating the abort can be estimated by
measuring the cost of exception propagation.

If the long-jump model is used, the finalization handlers for any enclosed scopes must be
executed, followed by the execution of a longjmp back to the setjmp location that
preceded the case statement for the selective entry call (see section 6.2.2). The mechanism
used by the run-time routine that detects a pending abort to locate the appropriate
finalization routines remains as an open issue for the design of finalization. Assuming this
issue can be resolved, we anticipate that the long-jump model will execute faster than the
propagation model by eliminating the need to unwind the stack as scopes are exited. The
cost of saving and restoring the general purpose registers on a 20 Mhz 68020 processor is
approximately 10 uSec, plus another 30 uSec if the floating point processor registers have
been used.

The implementation cost for abandonment depends on the model selected for finalization.
The propagation model is estimated to require one person-month to implement. The long-
jump model is easily implemented for targets that already support setjmp/longjmp, but
will require an estimated 2 person-weeks for other targets. Since both mechanisms are
target-dependent, this is a recurring cost.

6.2 Execution-Time Costs

The total execution time for effecting an asynchronous transfer of control will include the
execution time for: a selective entry call, the selection of one of the event alternatives, the
signaling of the aborted task, the execution of the appropriate finalization operations (if
any), and the return to the original execution point for the select (either via propagation or
longjmp). We do not yet have measurements for all but the first of these costs; however we
anticipate that the total execution time will be large.

7.0 Conclusions

7.1 Protected Records

We believe that protected records, although moderately costly to implement within the
compiler, provide significant functionality with reasonable performance, at a reasonable
implementation expense. Performance on some systems would be greatly enhanced by
replacing the non-blocking, priority-ceiling, exclusion mechanism with a different
mechanism. We are pleased that the semantic requirement for a non-blocking exclusion
mechanism has been moved from the core language to an annex.

March 21, 1992 23

7.2 Requeue

In our initial implementation of protected records (in which entry bodies were directly
executed in response to an entry call) Requeue proved very cumbersome to implement.
Our subsequent redesign of protected records entry calls has greatly simplified the
implementation of Requeue. We now believe that the implementation cost for requeue of a
protected record entry is small, and that the added expressive power of the feature justifies
its inclusion. To date we have not evaluated the cost of implementing requeue for task
entries.

7.3 Selective Entry Call

The effort to implement selective entry call is comparable to that of Ada 83 selective wait.
However, the run-time execution costs appear to be higher. We are concerned that the
overhead associated with this feature may be a limiting factor in its acceptance by the real-
time community.

7.4 Asynchronous Transfer of Control

The implementation of asynchronous transfer of control within the run-time system
appears expensive, particularly if the construct is allowed to be nested. Furthermore, for a
large class of systems, the only implementation option is to poll for pending aborts - thus
rendering the feature largely useless. Given that the feature is tightly integrated with
selective entry call, the run-time cost of performing an asynchronous transfer will be high.
We do not believe that the implementation cost is justified given the limited domain in
which the feature can be used. We would encourage the development of some alternate
mechanism to achieve the same benefit.

March 21, 1992 24

A.Test Execution Logs

All tests were compiled with checks on and with the maximum optimization option
selected. The test programs were executed on a Motorola MVEM135 single board
computer consisting of a 20 Mhz 68020 processor with one megabyte of zero wait-state
RAM.

135Bug>go 5000
Effective address: 00005000

Test Name: PR000001 Class Name: Protected Records
CPU Time: 14.9 microseconds
Wall Time: 14.9 microseconds. Iteration Count: 2048
Test Description:
 Minimum protected record procedure call.
 Protected Record inside procedure
 no PR entries

135Bug>go 5000
Effective address: 00005000

Test Name: PR000002 Class Name: Protected Records
CPU Time: 13.6 microseconds
Wall Time: 13.6 microseconds. Iteration Count: 2048
Test Description:
 Minimum protected record function call.
 Protected Record inside procedure
 no PR entries

135Bug>go 5000
Effective address: 00005000

Test Name: PR000003 Class Name: Protected Records
CPU Time: 33.9 microseconds
Wall Time: 33.9 microseconds. Iteration Count: 1024
Test Description:
 Minimum protected record entry call.
 Protected Record inside procedure
 PR has only one entry, always open

135Bug>go 5000
Effective address: 00005000

Test Name: PR000004 Class Name: Protected Records
CPU Time: 39.8 microseconds
Wall Time: 39.8 microseconds. Iteration Count: 256
Test Description:
 Minimum protected record entry call.
 Protected Record inside procedure
 PR has two entries, always open

March 21, 1992 25

135Bug>go 5000
Effective address: 00005000

Test Name: PR000005 Class Name: Protected Records
CPU Time: 40.7 microseconds
Wall Time: 40.7 microseconds. Iteration Count: 64
Test Description:
 Protected record entry call.
 Protected Record inside procedure
 PR has ten entries, always open

135Bug>go 5000
Effective address: 00005000

Test Name: PR000006 Class Name: Protected Records
CPU Time: 249.2 microseconds
Wall Time: 249.2 microseconds. Iteration Count: 128
Test Description:
 Selective protected record entry call.
 Protected Record inside procedure
 PR has two entries, alternately open.

135Bug>go 5000
Effective address: 00005000

Test Name: PR000007 Class Name: Protected Records
CPU Time: 294.5 microseconds
Wall Time: 294.5 microseconds. Iteration Count: 128
Test Description:
 Selective protected record entry call.
 Protected Record inside procedure
 PR has ten entries, first entry always open.

135Bug>g 5000
Effective address: 00005000

Test Name: PR000008 Class Name: Protected Records
CPU Time: 1723.4 microseconds
Wall Time: 1723.4 microseconds. Iteration Count: 16
Test Description:
 Selective protected record entry call.
 Protected Record inside procedure
 PR has ten entries, Last entry always open.

135Bug>go 5000
Effective address: 00005000

Test Name: T000009 Class Name: Tasking
CPU Time: 207.1 microseconds

March 21, 1992 26

Wall Time: 207.1 microseconds. Iteration Count: 128
Test Description:
 Task selective entry call and return time
 Two tasks active, one entry per task
 selective entry call statement

135Bug>go 5000
Effective address: 00005000

Test Name: T000010 Class Name: Tasking
CPU Time: 307.5 microseconds
Wall Time: 307.5 microseconds. Iteration Count: 128
Test Description:
 Task selective entry call and return time
 Ten tasks active, one entry per task
 First task will accept calls

135Bug>go 5000
Effective address: 00005000

Test Name: T000011 Class Name: Tasking
CPU Time: 1348.2 microseconds
Wall Time: 1348.2 microseconds. Iteration Count: 16
Test Description:
 Task selective entry call and return time
 Ten tasks active, one entry per task
 Last task will accept calls

March 21, 1992 27

B.Test Sources

The tests used to evaluate the performance of protected records and selective entry call
were derived from the PIWG90 T (tasking) tests. The source for the modified tests is
included here for reference.

