Defense Information Systems Agency

Joint Interoperability and Engineering Organization

Center For Operational Support

Ada Joint Program Office



DCA100-93-D-0066

Delivery Order 0045



Presentation Script



Why Use Ada for DOD Software Procurement?

Software Acquisition Conference

Dr. Charles B. Engle, Jr.





�SLIDE 1 - (In)Famous Quotes



Technical leaders, although able to predict and capitalize on current trends, have often misunderstood or underestimated the technology that they were helping to develop.  Take these educated predictions from experts:



	“I think there is a world market for maybe five computers.”

	Thomas Watson, Chairman of IBM, 1943



Two years after this statement was made, computers were developed with program storage and a year after that, the first all-electronic computer was developed.  When IBM began to understand the power of the computer, they embraced the new technology.  In 1952, IBM produced a vacuum-tube-based computer and defense computing made up half of IBM’s computing revenue throughout the 1950's. IBM announced the System/360 series of computers in 1964. By 1970, computer sales had made IBM the largest and most profitable industrial company in history.   IBM entered the PC market in 1981, and during the first four months 13,533 IBM PCs had been sold.‘14' & ‘15' 

[Ferguson, Chposky]



	“Who the hell wants to hear actors talk?”

	H.M. Warner, Warner Brothers Studios, 1927



Within three years of this statement being made, silent movies had become a thing of the past.  At the time, Warner Brothers, a small studio on the verge of bankruptcy, ended up adopting movies with sound as a novelty and a last resort.  In 1927, movie attendance topped around 5 million per week.  By the end of 1929, “talking pictures” drew 90 million per week, a growth of 1800%, during a time of economic depression.



�SLIDE 2 - (In)Famous Quotes



	“Everything that can be invented has been invented.”

	Charles H. Duell, Commissioner, US Patent Office



No one knew better than the US Patent Office Commissioner that the industrial revolution in America was a time of fantastic innovation and change.  Still, he wouldn’t see the Wright brothers’ airplane for four more years, the Model-T for nine years, or the first moving assembly line for fourteen years; nor would he see the radio, television, atomic power, microwaves, computers, or thousands of other inventions.  In 1994 alone, 113,268 patents were issued.Called U. S. Patent Office, and ‘12'





	“640K ought to be enough for anybody.”

	Bill Gates, Chairman, Microsoft, 1981



Within three years, Bill Gates would realize that because MS-DOS limited users to 640K of RAM of hard disk storage, it was becoming obsolete. In response to users’ needs, Bill Gates developed OS/2; released in 1987, OS/2 offered 25,000 times more memory -- 16 megabytes of RAM.‘14'

[Chposky]



	“The bomb will never go off.  I speak as an expert in explosives.”

	Admiral William Leahy, Manhattan Project, 1943



Admiral William Leahy would be proven wrongin just two years’ time... twice.  On August 6, 1945, the “Enola Gay” airplane successfully dropped the atomic bomb on Hiroshima.  On August 9, 1945, a second bomb was successfully dropped on Nagasaki, ending World War II.



	“Let’s use C++.  It’s less costly and error-prone than Ada.”

	YOU?



The goal of this presentation is to demonstrate why this statement belongs here in this list of infamous quotes.  C++ is an influential language today for many reasons, which we will address later, but there is a growing consensus  that Ada is the best choice for your software engineering requirements.



�SLIDE 3 - Agenda



In order to fully answer the question “Why Ada?” we need to approach it from a few different angles.



First, we will cover the powerful technical arguments in favor of using the Ada programming language.  



Then, we’ll take a look at some equally strong business arguments for Ada.  



We will take a brief look at the DOD Ada policy.



And we’ll finish up with a look at a few Ada success stories.  



When we are done, I think you’ll agree that Ada could be a language with an exciting place in your future.



�SLIDE 4 - Why Ada? (Technical Arguments)



To properly understand the technical arguments for using Ada, we need to go back to 1976.  



In that year, each department of the military services approved a set of computer language requirements that could provide long-term support to the warfighter.  



In a painstaking process, it was determined that the language must be 

developed with software engineering principles in mind,

able to handle large, complex projects,

standardized and validated, and

reliable and maintainable.  



The experts determined that none of the languages available at the time supported all of these requirements.  Several different languages were being used or modified for individual tasks, which led to the creation of the Ada programming language.  Ada was adopted as a standard in 1983 and, as of 1995, it is still the only language that meets all of these requirements.  [Sammet, p. 723]



�SLIDE 5 - FAA Weighted Scores for 6 Criteria Categories



How successful were the designers of Ada?



In the mid-1980's, the Federal Aviation Administration contracted with IBM to evaluate high order languages for use on its Advanced Automation System Program.



The result was a formal, quantitative study comparing 48 language features in six catagories: Capability; Efficiency; Availability/Reliability; Maintainability/Extensibility; Life-Cycle Cost; and Risk.  This study concluded that the use of Ada was “in the ultimate best interest... to reap the significant benefits/payoffs over the long term.” 

[Weiderman, p.36: Ada and C++, pp.3-4]



�SLIDE 6 - SEI Weighted Scores for 6 Criteria Categories (MIS/C3)



The Software Engineering Institute performed a follow-on study in 1991 using the same methodology to compare Ada and C++ for application in information systems and Command, Control, and Communications.  Although C++  improved over C, Ada continued to score higher.



A proven winner, Ada is clearly the right choice for these systems.  



[Weiderman, p.36]



�SLIDE 7 - Integration and FQT Defect Rates



Another study, from CTA, gathered data from four programming domains. The average error rates across the four domains for both Ada and C++ projects are shown here.  The integration error rates include all errors caught from the start of integration defect testing to the completion of Formal Qualification Test defect testing.  The FQT error rate includes only those errors found during the FQT process.



The C++ project data included information from 23 projects by seven firms, all of whom had been using C++, UNIX, and object-oriented techniques for over 2 years.  All projects were new developments, with application sizes ranging from 25 to 500 KSLOCS.



This study demonstrates Ada's strong integration capabilities.  Large, complicated programs can be broken down, developed by distributed work groups, and integrated with remarkable efficiency.

[CTA, p.10]



�SLIDE 8 - Do Defects Really Matter?



What do these differences in defect rates really mean?

Is there any significance to them?



To demonstrate the real impact of defects, let's consider the following:



Would you consider it acceptable for the following processes to be 99.9% reliable?

Each 0.1% defect rate would result in an additional: 



	1 hour per month of contaminated drinking water.



	16,000 letters lost every day by the US Postal Service.



	2 accidents per month at O'Hare International Airport.



	20,000 erroneous drug prescriptions each year.



	50 babies dropped on the delivery room floor each hour.



	22,000 checks drawn from the wrong account per hour.



From these examples, I think we can see that it is in our best interest to limit our exposure to any more risk than is necessary...  especially if its your business, your money, or, in the case of DOD, your life at risk.This came from a slide for a presentation by Ara K. From Q-labs or SET



�SLIDE 9 - Software Crisis 1976



The technical reasons to use Ada translate into business reasons to use Ada.



In 1976, according to a DOD report, the minimum number of probable languages and dialects in use for DOD programs was 450, but the actual number was not identifiable.  DOD was developing unique languages like CMS-2 and Jovial for specific needs.

[Hook, p. ES-1]



There were substantial drawbacks to this state of affairs:



	The differences between languages and the deviation from language 

	standards to form dialects resulted in low interoperability; it was 

	difficult to port code from one platform to another. There was little 

	ability to reuse code.



	The cost of maintaining these programs was very high.  Programmers 

	possessed very specialized skills and could not be easily moved to 

	other projects.  Different compilers and tool suites had to be 

	maintained for these languages.

	[Guidelines, p.5-4]



	Maintenance and support of these languages was unreliable.



When the drawbacks of language proliferation are viewed together with the seriousness of software defects and the potential for disruption of military preparedness, the development of Ada was an unavoidable business decision.



�SLIDE 10 - Current State of Ada Use in DOD



Here you see the results of a programming language survey conducted by IDA in 1994.  The survey involved direct contact with the organizations in DOD responsible for developing or maintaining systems that contain software.  Survey responses were deliberately mixed to prevent the association of program and system names, to ensure accurate responses.



Since the adoption of Ada in 1983 we have seen a significant decrease in the number of  third-generation languages used in the DOD, from over 450 to 37.  This means increased interoperability and, more importantly, decreased cost.



Other industries also recognized the advantages and moved toward standardization at the same time.

[Hook, pp. ES-4, ES-5]



As the number of languages in use in the DOD has decreased and the trend for adopting standards has grown, Ada has become the first choice for weapons systems; C is the second most popular.

[Hook, p. ES-3]



Ada is the second choice for Automated Information Systems, coming in just behind COBOL.

[Hook, p. ES-4]



�SLIDE 11 - Ada in Maintenance Arena



Where Ada cost savings are most apparent is in maintenance of large, complex software programs.  



In the mid-1970's, while working at IBM, Allan J. Albrecht developed the function point analysis method, the most accurate and reliable method for estimating time and cost of a systems engineering project. It measures the system's logical process characteristics, such as the number and complexity of its internal logical files and its external inputs and outputs.

[Davis]



The results of a MITRE study show that, by function point, Ada maintenance is much less costly than other higher-order languages, and significantly less costly than C.

[Shrank, p. 4]



C has a long way to go even to reach parity with Ada:  a 100% increase in productivity and a 50% increase in quality would not reduce the cost of C to that of Ada.



�SLIDE 12 - Hard Data Justifying AdaSuggests explanation for scale and how numbers rank.  The second paragraph explains basis.  The final paragraph explains ranking of Ada.



To see how programming in Ada today can save you time and money in the future, take a closer look at Ada reliability and maintainability.  These figures come from RCI.  



The upper table shows the average number of errors found per thousand lines of code.  The lower table shows the mean time to error.  The lower table only takes into account “show-stoppers,” or errors that require repair in order to allow the system to function properly.



These tables depict a comparison between Ada and C/C++ for a variety of different types of applications: command & control systems; information systems; telecommunications systems; and weapons systems.



Across all areas, Ada shows fewer errors per thousand source lines of code than C.  Systems designed with Ada can run from 30% to 400% longer than C without having an error that demands immediate attention.



�SLIDE 13 - Common Reasons for NOT Using Ada



Now that we’ve documented the superiority of Ada, we must account for the fact that it is not used more widely.  There are a litany of perceived inconveniences and coping strategies:



Ada is still perceived as a language being imposed on programmers by the DOD bureaucracy.  Many hope that it is an annoyance that will eventually fade; their point of view is, "If I ignore it long enough, it will go away."

*The truth is that Ada will not go away in the foreseeable future.  DOD has a tremendous investment in Ada, and major systems written in Ada will be in use for at least the next 20 years.



Others assume that Ada is complex, unintelligible.

*In fact, Ada is very similar to Pascal.  Its basic design was derived from Pascal and has been extended to fully meet DOD requirements.



Still others view Ada as a radical departure from what they already know, a language with a steep learning curve.

*The learning curve for Ada is no greater than for any other complex technology.



And some contend that Ada is an immature, unsupported language, that the compilers and tools are expensive and unavailable.

*This is simply not true.  Tools and compilers have been developed and are available.  In fact, today there are free Ada 95 compilers.



Ada detractors have an arsenal of off-the-cuff excuses for not using it.  However, when all the facts are considered, it becomes apparent that Ada is a mature, supported, learnable language that can efficiently and economically serve your development needs.



�SLIDE 14 - Expected Benefits of Ada



There are real benefits to be gained from using Ada and, in the end, they all lead to increased quality per dollar spent.



Over the course of its lifecycle, it is often necessary to move a software program to a different host computer due to hardware changes and upgrades, management changes, or support problems.  Mature Ada compilers are available for many different platforms and environments and correctly designed Ada source code is readily portable across numerous architectures, saving time and money when it becomes necessary to move a system.  Language standardization helps to ensure portability [Software], though developers should strive to avoid the use of vendor-specific features in order to secure the real benefits from Ada or any other standard.



Also because of language standardization, programmers trained in Ada can move from project to project without extensive and expensive retraining.



Ada code is very readable, making errors easier to locate and correct. Code maintenance and change is made easier because earlier work can be clearly understood, helping developers to avoid incorrect and unintentional code alteration.



Ada is reliable because its compilers apply rigorous checks to the code at compile-time, enabling the programmer to remove defects.  At run-time, Ada effectively compartmentalizes code, preventing unpredictable interactions between modules.  Reliability and recovery capabilities are designed into the language, the importance of which is illustrated by problems encountered by AT&T in January 1990.  Nationwide, 5 million phone calls were blocked over a 9-hour period due to an undetected latent flaw in the recovery-recognition software in 114 electronic switching systems that had been installed 1 month earlier. The C program contained one unexpected intervening {\tt if} clause that was not caught [Neumann].



Much effort has gone into the development of a method for integrating tools and design methodologies with Ada compilers.  The Ada Semantic Interface Specification (ASIS) defines an interface that can be used by any tool vendor to retrieve the information from a compatible compiler that is needed to drive software design tools, code browsers, debuggers, metrics tools and many other development aids.  This has led to an increase in the availability and capability of tools for Ada development [Guidelines, p. 5-69].  It has also provided a low cost transition path from Ada 83 to Ada 95 [Colket, p. 9].



The modular nature of Ada gives developers the ability to break down programs into manageable units, following good software engineering practice.  Ada is unique in providing discipline for programmers, increasing the probability of a well engineered system that is less expensive to maintain.



Ada's readability, abstraction, and information hiding abilities make it easier for managers and non-programmers to understand the system and be more involved in its design.



Studies quoted by the US Air Force have shown that there is an Ada productivity edge of about 35%, largely due to the existence of a strictly-enforced, mature Ada standard [Guidelines, p. 5-11].  Rational Software found that the cost per single line of C code in their VADS toolset was 159% higher than Ada [Zeigler, p. 2].



Productivity can be further increased by reusing code that has already been designed and tested.  The Ada language has many features that can be exploited to take advantage of code reuse.  Ada allows the compartmentalization of information within packages and tasks and the use of generic procedures and data abstractions to achieve a modularized structure.  The result is an increased capability for the creation of reusable software components, which can be inserted into new programs or easily adapted [Sammet, p. 730].



�SLIDE 15 - Why Ada? (Business Arguments)



When viewed from a business perspective, Ada’s advantage is its support for open systems and interoperability.



The Ada language offers superior support of the "ilities," a set of desirable software characteristics that allow the programmer to take advantage of software engineering techniques. Many of them are also traits of open systems.  We've touched on them throughout this presentation.  They are: portability; availability/reliability; reusability; readability; and verifiability.



Portability - The ability to move programs to different hardware platforms and environments, which we discussed earlier, can be extremely significant, given the rapid changes in the computer hardware market.



Availability/Reliability - Ada compilers are capable of finding many programming errors at compile time or object time [Sammet, p. 731].  Ada 95 has sophisticated abilities to handle exceptions raised during execution, permitting recovery from conditions that might otherwise cause an error.



Reusability - Though we just discussed code reuse, it bears repeating because of the tremendous implications for reduced costs.  To successfully realize the productivity gain promised by reuse, the code itself must be both portable and reliable; as we have documented here, the Ada language was expressly written to meet these requirements.



Readability - As we noted previously, Ada is by its nature very easy to read and interpret.  In addition to the benefits already discussed, readability improves the possibility of code reuse by simplifying code evaluation for inclusion in a library or in another system.



Verifiability - Ada does not specifically provide verification features.  However, software verification is not an end in itself, but a means of achieving reliability.  Ada provides reliability directly, without the additional abstraction of a verification process [Sammet, p. 731].



When taken together, these "ilities" add up to higher programmer productivity and lower system lifecycle cost.



The DOD is well into its second decade of using Ada; each new development represents potential increased economies of scale. The DOD has committed itself to the use and support of Ada.



Ada is being taught in universities, as well as in the service schools and academies.



It is the number one language in the embedded systems world.



Ada is an international standardized language that is engineered to help you avoid proprietary solutions.



�SLIDE 16 - Why C++?



If Ada is as good as I'm telling you it is, why does C++ enjoy such good favor in the marketplace?  There are a variety of reasons:



C++ has been marketed by the industry heavyweights.  The DOD did not market Ada at all until just recently and, even now, the effort is limited.  The DOD’s mission is defense; marketing, however important, is not a task to which DOD can commit itself.



C++ features object-oriented programming support.  Ada 83 did not fully implement this, but Ada 95 does.



C++ builds on the popularity of C, which comes with UNIX operating systems.  Most students have been taught C.  The object-oriented extensions of C++ are easier to understand coming from a C background.



C++ tools, bindings, visual environments and support are abundantly available from at least 18 compiler vendors.  These compilers, however, are not necessarily interoperable, only part of the problem with nonstandard compilers.  We will discuss this a little more in a moment.



Ada 83 did not support decimal arithmetic, though the largest amount of software developed in the business world requires this feature.  Ada 95 does fully support decimal arithmetic and, therefore, Management Information Systems (or MIS).



Now I will make a prediction that I hope will not end up in a presentation intro.  In the foreseeable future, most MIS development will be automatically generated.  Compiler languages will be used for large, complex system development with unique requirements, such as those in DOD.



�SLIDE 17 - Why C++?



It costs less to start a project using C++:  programmers and tools are cheaper and more plentiful.  Ada is a more sophisticated tool and does appear to cost more when only up-front costs are examined.



C++ gives programmers more freedom.  The language allows for rugged individualism and, therefore, all the danger that can come with it.  Ada imposes discipline on the developer and safety on the development; it is, and will continue to be, unpopular with hackers.



The most important surface advantage enjoyed by C++ is that there is no standard.  The 18 different compiler vendors all operate on proprietary versions of the language and that means one company’s C++ is not necessarily portable to another’s C++ environment. [Guidelines, p. 5-11]  Ada compiler vendors must submit their products to a detailed validation process in order to advertise and sell a standardized Ada compiler.  This procedure ensures that software developed for Ada, for any given computer system, can be reused on other computer systems without significant re-development. [Guidelines, p.5-16]



�SLIDE 18 - Why C++ for Industry?



There are deeper reasons why C++ has enjoyed a favored status in private industry.  One of them is the differences between the DOD mindset and the industry mindset: Just like any other software customer, the DOD wants maximum flexibility and vendor-independence; the commercial industry wants to lock its clients into using only their products.



DOD wants to buy one system; the commercial sector wants to sell 

many.



DOD must plan for the long term, which precludes quick reactions to 

market forces; the commercial sector must react quickly to survive.



The DOD market is a limited market; the commercial sector looks to a large market.



The profit picture is fixed in the DOD market; the commercial sector looks for large profit potential.



In the DOD world, failures cost lives or national destinies; in the commercial sector failures cost money.  Industries with a requirement for reliability, though, use Ada extensively.



By its very nature, then, C++ appealed to the commercial sector.  Ada 83 was attractive to the DOD-type project engineers.



�SLIDE 19 - What Was Wrong With Ada 83?



When the standard was introduced, there was nothing wrong with Ada.  In fact, some would argue that Ada was ahead of its time.  However, as with any language, there must be a logical evolution in order to maintain pace with user requirements. 



We know far more about OOT now than we did when Ada was first standardized.  The object-oriented support built into Ada 83, called “object-based” by some, was based on the OO concepts available during the late seventies and early eighties.  



Ada 83 was, and continues to be, caught in a catch-22.  Commercial vendors didn’t expend funds to develop tools and bindings for the language because there didn’t appear to be a large and profitable marketplace in which to sell them.  Marketplace users didn’t develop applications using the language because the tools and bindings available were expensive and few in number.  Smaller companies didn’t use the language because of the initial start-up costs.  Larger companies didn’t use the language because the marketplace appeared to be limited, the profit and potential appeared to be small.  



Compared to Ada language compilers, other language compilers (such as C++, Visual BASIC, Smalltalk, and PASCAL) came with large libraries of tools designed to help the programmer quickly get started.  Although many are proprietary, many of today's compilers come with complete frameworks; some are considered de facto standards, which support quickly developing full-featured applications (MS C++ Foundation Classes, Smalltalk Visual Works, Delphi, etc.).  These frameworks allow the programmer to easily take advantage of such things as ODBC, OLE, TCP/IP, SQL etc.. This allows the developer to focus on using the functionality and not on developing this functionality.



At the time of development, Ada was the only general-purpose computer language that provided any support for real-time applications.  Many large real-time, safety and mission critical systems have been developed using Ada.  One criticism, though, was that the scheduling rules were unsatisfactory -- especially with regard to the rendezvous.  First-in-first-out queuing on entries and the arbitrary selection from several open alternatives in a select statement lead to conflict with the normal preemptive priority rules.  For example, priority inversion occurred when a high priority task was on an entry queue behind a lower priority task.



The early compilers for Ada produced large executables.  Some of this was caused by the way the compilers handled 'withing in' another package (by reference, or by deep copy).  Those that used a deep copy created extremely large executables, which were difficult to fit into target platforms.  However, some of the problems in this area, especially when dealing with MIS targeted at the PC environment, were due to poor design on the part of the developers.  Several developers created packages that supported only atomic values (in other words, only one data element per package and limited use of complex records).  This meant that very large quantities of packages had to be 'withed in' to accomplish the goals of the development.  Each Ada package created added significant amounts of overhead to the executable.  Over time, the development of optimizing compilers -- and the experience of Ada users -- diminished this issue.



Every standardized language must evolve to meet user requirements -- Ada is no exception.  It became obvious that a new version of Ada was needed -- one that would provide solutions to the raised issues, but would retain Ada 83’s good features.  Ada 95 was the answer. 



�Slide 20 - Basic OOP in Ada 95



Ada 95 continues the strong inherent ability of Ada 83 to support abstraction and modularity.  The addition of support for child libraries and enhancements to Ada's OO model provides excellent support for data and algorithm abstraction. It also supports the ability to develop very modular applications, while remaining upwardly compatible with Ada 83 developments.



Ada 83 supported a form of inheritance through the use of  ‘generic’ packages, and by the implementation of variant records.  The use of generics, or procedural templates, was a difficult concept for some early Ada developers.  Once mastered however, they provided a very powerful mechanism for procedural abstraction and allowed a rudimentary inheritance of the base structure of the generic package.  Variant records could also be used, but many found them to be cumbersome and resulted in a large increase in overhead.  Ada 95 uses 'tagged types' to support inheritance and allows the developer to derive child packages directly from the parent, with or without an extension of the structure and the methods of the parent.  Ada 95 also supports the ability to create child libraries that can be separately compiled from the parent library, while still deriving the functionality and structure of the parent.



Ada 83 supported a form of polymorphism through the use of overloading that allowed the developer to reuse a procedural name or operator by redefining the context and semantics.  For example, when using integer numbers, the + sign adds one integer to another. The + operator could be redefined to work with an abstract data type consisting of a set of colors and provide the proper color mix (i.e., red + yellow = orange).  This polymorphic behavior had to be resolved at compile time.  Ada 95 supports a true polymorphic operation through the use of class-wide types and type extensions, which can contextually recognize the appropriate operation to perform.  In other words, a call to 'ProcessPayroll' will execute the correct code whether it is for a civil servant or military person.  Ada 83 only supported static (or early) binding.  This meant that all references had to be resolved at compile time in order to successfully create an executable.  Ada 95 supports dynamic (or late) binding, which allows the developer to create applications that resolve messaging references during execution based on the actual instances of the objects involved.



Ada 95 does not directly support multiple inheritance because of the language problems that are caused by its use.  The general concept of multiple inheritance is that an abstract data type can have multiple (two or more) parents.  This concept becomes troublesome if the parents are derived from the same ancestor.  The issues are whether the child inherits two copies of the type ancestor (one from each parent), and what happens if the same method is inherited from both parents, which was originally derived from the single ancestor.  This scenario causes ambiguity that can lead to some unexpected results.  In most cases where multiple inheritance seems to be warranted, there is almost always an inherited type that is clearly the dominant parent. Ada 95 handles this condition by only directly allowing single inheritance, but permitting the use of indirect secondary inheritance [Barnes].  

�Slide 21 - Multiple Inheritance



As demonstrated on this page, Ada 95 provides indirect support for using common forms of Multiple Inheritance available in two popular object-oriented languages.  Although some may consider these implementations more tedious than the methods available in other languages, the approach taken ensures consistency and upward compatibility.  At the same time, the look, feel and reliability aspects of Ada 83, including strong typing, are upheld.




�Slide 22 - Interfacing to Other Languages



Ada 95 directly supports communication with applications developed in other languages through the use of Pragma Import and Pragma Export. [Ada 95 LRM 21.4]  Specific pragmas are available for C, COBOL, and Fortran.  Import Pragmas are intended primarily for accessing types and 'callback programs' written in other languages.  Export pragmas allow mixed-language access to entities developed using Ada 95.



Pragma Import allows the developer to specify a subprogram in Ada 95, but utilize an algorithm developed in another language, as the body of the routine.  For instance, a C routine to access a low level hardware component could be called via the Ada 95 Pragma Import.



Pragma Export allows development of an Ada 95 subprogram that is accessible by programs written in other languages.  



The Ada 95 package Interfaces.C contain the pointers to variables, constants, and subprograms which allow an Ada program to communicate externally with other languages.  



Package Interfaces is the parent of several library packages that declare types and other entities useful for interfacing to foreign languages. [Ada 95 LRM B.2]  This package also contains some implementation-defined types that are useful across more than one language (in particular for interfacing to assembly language).



Interfaces.C - The facilities relevant to interfacing with the C language are provided by this package, its children and support for the Import, Export, and Convention pragmas.  It contains the basic types, constants and subprograms that allow an Ada program to pass scalars and strings to C functions. [Ada 95 LRM B.3]



Interfaces.Fortran - The facilities relevant to interfacing with Fortran are the packages Interfaces.Fortran and support for the Import, Export and Convention pragmas with convention_identifier Fortran. [Ada 95 LRM B.5]  The Interface.Fortran package defines Ada types whose representations are identical to the default representations of the Fortran intrinsic types:  Integer; Real; Double Precision; Complex; Logical; and Character.  These types can be used to pass objects between Ada and Fortran programs.  



The To_Fortran and To_Ada functions map between the Ada type Character and the Fortran type Character_Set, and also between the Ada type String and the Fortran type Fortran_Character.  The To_Fortran and To_Ada procedures are analogous to the string conversion subprograms found in Interfaces.COBOL.



Implementations may add additional declarations to support specific versions of Fortran (i.e., Fortran 77, Fortran 90)



Ada procedures correspond to Fortran subroutines.  Ada functions correspond to Fortran functions.  



Interfaces.COBOL - The facilities relevant to interfacing with COBOL are the packages Interfaces.COBOL and support for the Import, Export and Convention pragmas with convention_identifier COBOL.  The COBOL interface package contains several sets of facilities:



A set of types corresponding to the native COBOL types of the supported COBOL implementation.  This permits Ada data to be passed as parameters to a COBOL program.



A set of types and constants reflecting external data representations such as those found in files or databases.  This permits COBOL-generated data to be read by Ada programs, and Ada-generated data to be read by COBOL programs. [Ada 95 LRM]



A generic package for converting between an Ada decimal value and either an internal or external COBOL representation.


�Slide 23 - Other, Miscellaneous Changes



Decimal Arithmetic - Decimal arithmetic is supported by the Information Systems Annex and is an enhancement to Ada associated with support for COBOL type programs [Barnes].  This annex provides the rules for performing division, and for formatting I/O into human readable form.  Support is also included for a type Picture similar to the COBOL equivalent and allows a means for localizing the currency symbol, filler characters, digit separators, and the radix mark.



User defined assignment/controlled types - Initialization, finalization and assignment are fundamental actions for manipulation of objects.  A controlled type gives the user additional control over parts of these operations.  The user can define: 1) an Initialize procedure which is invoked immediately after the normal default initialization of a controlled object; 2) a Finalize procedure which is invoked immediately before finalization of any of the components of a controlled object; and 3) an Adjust procedure which is invoked as the last step of an assignment to a (nonlimited) controlled object.



"Use type" clause - There is a popular school of thought that believes the 'use' clause is bad because it obscures the origin of entities.  The "use type" clause provides visibility to a single entity from within a package, but forces the use of full dot notation for any other entity from the package.



Enhanced Generics - The generic facility in Ada 83 proved very useful in developing reusable software particularly with regard to its type parameterization capability.  Ada 95 corrects a few anomalies in the Ada 83 generic and adds a number of additional parameter models to match the new object-oriented facilities.  Several enhancements to the generic model include:  introduction of a distinct formal notation which enables definite and indefinite subtypes to be treated separately; new formal notations for modular and decimal types; extention of access type matching rules to accommodate the additional forms of access types; a new formal notation for package parameters; and others. [Ada 95 Rationale 12]



Mixing of declarations and bodies - The Ada 83 restriction against types subtypes, and objects being declared after bodies (including body stubs) within a declarative part has been removed in Ada 95.  This permits moving local variable declarations of a subprogram body to the end of its declarative part. [Ada 95 Rationale 3]



Asynchronous transfer of control - This enables an activity to be abandoned if some condition arises (such as running out of time) and an alternative sequence of statements to be executed instead.  This provides the capability to perform mode changes.  Asynchronous transfer of control is achieved by a new form of select statement which comprises two parts:  an abortable part and a triggering alternative. [Ada 95 LRM II.10]



New Standard Packages - Ada 95 added multiple string manipulation packages to the standard library to support fixed, bounded, unbounded, and wide strings.  

The Elementary_Functions package is added to provide basic floating point numerical calculations for use with the predefined type Float.  

Facilities for generation of pseudo-random floating point numbers are added by package Numerics.Float_Random.  

Package Stream_IO provides support for manipulation of totally heterogeneous files.

Exception information returns implementation-defined information about the occurrence of an exception.




�Slide 24 - Annexes



The following information is taken from the Ada 95 LRM, the Ada 95 Rationale, and the John Barnes book referenced earlier.



Predefined Language Environment - One of the main objectives of Ada 95 is to supply a set of supplemental packages of general utility in order to promote portability and reusability.  These features are supported by the packages within this annex.



Language Interfaces - It is important for Ada 95 to be able to interface effectively with systems written in other languages.  The success of Ada 95 depends in part on its ability to cleanly and portably support interfaces to such systems as X Windows, POSIX, and commercial windows-based personal computer environments.  To achieve this, this annex supports pragmas to C, COBOL, and Fortran.  Additionally, the root package Interfaces contain declarations for hardware-specific numeric types.



Systems Programming - This annex covers a number of low-level features such as in-line machine instructions, interrupt handling, shared variable access and task identification.  This annex is a prior requirement for the Real-Time Systems annex.



Real-time - This annex addresses various scheduling and priority issues including setting priorities dynamically, and scheduling algorithms and entry queue protocols.  It also includes detailed requirements on the abort statement for single and multiple processor systems and a monotonic time package (as distinct from Calendar which might go backwards because of time-zone or daylight-savings changes).



	


�Slide 25 - Annexes (2)



Distributed Systems - The core language introduces the idea of a partition whereby one coherent 'program' is distributed over a number of partitions each with its own environment task.  This annex defines two forms of partitions and inter-partition communication, using statically and dynamically bound remote subprogram calls.



Information Systems - The core language extends fixed point types to include basic support for decimal types.  This annex defines a number of packages providing detailed facilities for manipulating decimal values and conversion to external format using picture strings.



Numerics - This annex addresses the special needs of the numeric community.  One significant change is the basis for model numbers.  These are no longer described in the core language but in this annex.  Moreover, model numbers in Ada 95 are essentially what were called “safe numbers” in Ada 83, and the old model numbers along with the term “safe numbers” have been abandoned.  Having both safe and model numbers did not produce a benefit commensurate with the complexity and confusion thereby introduced.  This annex also includes packages for manipulating complex numbers.



Safety and Security - This annex addresses language and requirements restrictions involving compilation systems for programs used in safety-critical and related applications, where program security is vital.


�Slide 26 - Comparison of Ada and Other OOPLs



This slide presents a direct comparison of many features considered critical to object-oriented development and support for today's technology.  As you can see, with the exception of Multiple Inheritance which is supported indirectly through other language features, Ada 95 directly supports all the key OO features where two of the other more popular OO languages do not.




�SLIDE 27 - Ada Bindings ProductsNeed to identify AdaIC database as source on slides



There has been a great deal of work to address concerns about lack of Ada bindings.



There are currently 78 Ada 83 bindings available from commercial vendors or in the public domain.  These bindings are upwardly compatible to Ada 95, and work is underway to rewrite many of these bindings, taking advantage of object-oriented and real-time features of Ada 95.



There are 8 Ada 95 bindings available, with many more under development.  The Ada Joint Program Office has developed a comprehensive plan for the development of Ada 95 bindings to address future areas of need.




�SLIDE 28 - Validated Ada Compilers



There have been 866 compilers validated for Ada 83.  There are currently 14 Ada 95 compilers.  This represents a concerted effort on the part of the compiler vendors, who have only had the official standard since February '95.  As is the case with bindings, there are more Ada 95 compilers under development.




�SLIDE 29 - Ada Tools



There are 453 individual tools available for Ada 83.  A full tool set would include a compiler, assembler, linker, run-time system, loader/reformatter, librarian, debugger, editor and documentation generator.



There are 14 tools available for Ada 95.  This list is constantly growing.  Information is updated periodically and available through the AdaIC.  Again, these tools are the result of great efforts on the part of compiler vendors.




�SLIDE 30 - Ada 95 Commercial Training



Training is needed any time one changes languages, to reduce the risks associated with the new language and fully exploit its features.  



The commercial training vendors have been very responsive to demand.  The number of vendors offering Ada 95 training has gone from 4 in January 1995 to 95 as of March 1996.



There are a wide variety of course offerings from Ada 95 adoption assessment, through coding, to program management. There is flexibility in training options as well.  You can choose from courses for first-time programmers, for those migrating from other languages, and for programmers migrating from Ada 83.




�SLIDE 31 - Institutions Offering Ada Courses



The traditional institutions have also responded to the demand for Ada training.  We have seen a steady increase in Ada course offerings during the last ten years.  In 1986, Ada was taught in 74 institutions.  Since then, the number of institutions offering Ada courses has been rising at an average growth rate of over 25% per year to 345.




�SLIDE 32 - Number of Ada Courses Offered



As you would expect from the previous slide, the number of courses offered has increased since 1986, from 163 to over 650 courses available.



The vital point contained in these last three slides is the presence of an ever-increasing supply of trained Ada programmers.  This translates to a higher availability of programming talent at more reasonable cost.




�SLIDE 33 - AdaIC Newsletter Distribution



We also have seen general interest in Ada increase over time.  The distribution of the quarterly newsletter published by the AJPO's Ada Information Clearinghouse has increased by several thousand over the last decade.  Since June of 1995, the rate of increase has accelerated.  Ada 95 is hot news, and more people are crowding around to hear about it.




�SLIDE 34 - AdaIC Newsletter Reader Profile



Who are the people interested in Ada?  It is not just DOD.  Statistics show that less than a third are government.  Most of them are in the commercial sector or academia.  Since Ada is an internationally standardized language, the AdaIC receives newsletter subscription requests from all over the world.






�SLIDE 35 - US Consumers of Ada Data



Interest in Ada is not confined to the DOD.  In fact, from these figures showing cyber-visits to the Public Ada Library, you can see that almost half of the visitors are from commercial industry.  DOD does not even account for 10% of the PAL Ada inquiries.




�SLIDE 36 - Data for Overall Development of the VADS Product Line



The VADS product line is a set of programming tools sold by Rational Software Corporation.  It was originally developed by Verdix, which later merged with Rational.  An analysis was performed on the historical software development records as part of the merger.  The results were used to determine the value of the companies and also to discover the best practices to continue in the new merged company.  



The study was conducted in 1993 through 1994.  The results are shown in this table.  They provide us with an objective comparison of C and Ada.  These statistics were derived from data generated automatically by the software configuration control system.  The C and Ada areas are worked by about the same people, using the same tools, under approximately the same conditions.  The C programmers enjoyed a slight advantage because they tended to be more experienced.



The conclusion was that C development was more costly than Ada.  You will note that the cost per thousand lines-of-code for C is $10.52.  For Ada it is $6.62!  The defect rate per thousand lines-of-code for C was over seven times the rate for Ada.



Ada code was found to be better organized, because the language encourages better programming.  Errors are easier to locate.  The programming tools are superior.  The increased power of the Ada language was found to make complex programming tasks easier.



From a business and technical standpoint, this study proved that Ada makes more sense than C, and early reports are that C++ is showing even higher error rates. [Zeigler]




�SLIDE 37 - Software Development vs. Software Maintenance



Let's move on to discuss a consideration that makes Ada an even more attractive choice, a consideration that is often overlooked.  Because the procurement system contains an inherent conflict between software development and software maintenance, the cost advantage of Ada may not always be clear.



When looking at computer systems from a total lifecycle perspective, researchers have found that sixty to eighty percent of costs occur after development and  implementation.  The maintenance phase accounts for the lion's share of the costs in traditional projects.



What we find is procurement decisions that are often driven by lower development costs.  When you focus on that single phase of the lifecycle,  you are only getting twenty to forty percent of the story!



On most projects, development and maintenance phases are handled as two separate contracts.  This creates an artificial division in the lifecycle that makes it easy to overlook the costs of maintenance.  The savings in maintenance costs is one of the most important advantages of Ada.



Another discovery is that COTS software is not always the correct choice.  Maintaining COTS is difficult if not impossible.  Source code is not always available. In addition, vendor support does not always continue.



To get a true picture of the costs of a software system, you must take the total lifecycle into consideration and not just the development phase.  It is in the best interest of the customer to make a fiscally responsible decision.




�SLIDE 38 - Ada Policy



Besides being a good idea from a technical and business standpoint, the use of Ada is also DOD policy.



Ada is the single common higher order language to be used.



All new development must be in Ada, unless it is waived.



All modifications to existing code of more than one-third of the software must be in Ada.DoDI 5000.2      [Guidelines, p. 5-4]



An approved waiver is required if Ada is not used.



The waiver:



Must specify that the development will use a language approved in DODD 3405.1.



Must be more cost effective during the entire lifecycle.



Is not required for COTS if the government will not modify or maintain it.



Is not required to implement vendor-provided updates to COTS software. [Guidelines, p. 5-7]



So Ada is not just a good idea, it's the policy.  After having said all of this, it is necessary to state that Ada is not a panacea, and there may be some good reasons not to use it.




�SLIDE 39 - When Not to Use Ada



Ada may not be appropriate:



When some other language has lower lifecycle costs.  Remember the maintenance phase!



For some R&D applications where the intent is for concept development only and the system will not be fielded.



For some prototype applications.  However, the prototype must not be carried into E&D for subsequent fielding.



When a compiler does not exist for the hardware platform.



When timing and/or sizing constraints make Ada technically infeasable.  Many programmers have been surprised at what a mature Ada compiler can achieve that seemed impossible.



For other circumstances, Ada is a proven performer. There is a Language Selection monograph available that can help you decide if Ada is the best choice for a project. 



The Ada policy has resulted in a popular belief that Ada is a "DOD language."  This has, at times, discouraged use of Ada in the commercial sector.  Keep in mind that this policy is not a “Use Ada for Ada’s sake”  but “Use Ada because it is a good idea.” 




�SLIDE 40 - Policy vs. Ownership



There needs to be a distinction between policy on the one hand and ownership on the other.



Ownership implies responsibility for continuous maintenance.  There is a right and obligation of stewardship.  



The advantage of ownership is that the owner maintains intellectual control of the language.  The disadvantage is that all of the costs of upkeep must be borne by the owner, and there is an identification of the product with the owner, for better or worse.



Policy, on the other hand, implies only guidelines for use.  The DOD can maintain the policy without assuming ownership of the means of implementation.



The advantage of policy is that the market bears the costs of upkeep and standardization while reaping the known benefits of standardization.



The disadvantage is that DOD does not maintain complete intellectual control of the language.  



The desire is for DOD to become an informed consumer of products engineered in accordance with the policy, not the proprietor of a programming language.




�SLIDE 41 - Industrial Applications in Ada



Here are some examples of successful Ada applications in the commercial sector.



Weirton Steel Hot Mill used Ada because of its reliability.  The process automation engineer credits Ada for keeping the mill running smoothly.  He says,  "It's because the software keeps running.  It's capable of regenerating and going ahead." [Why, p.4]



An automated parts delivery system was developed for the Volvo factory using Ada.  Automobile parts are delivered on small, driverless, automatically guided vehicles. They fetch requested items from the warehouse and deliver them to workers on the factory floors and these vehicles can be dynamically rerouted. [IIT Research Institute, p. 6-8]



The Coulter VCS measures the white blood cells volume and opacity, simultaneously; and measures the differences between the light's scatter in gangles when it bounces off the white cells. An Ada program uses a combination of these three qualities to group the blood samples into five classes.  A second program quantifies the reaction of the donor's white blood cells with the recipient’s antibodies.  The software was finished ahead of schedule and approximately 1/3 of the 2,833 lines from the first program were reused for the second. [Leif]



Orson & Prompt are two programs written to edit videotape and run a tele-prompter.  The real-time and tasking features of Ada enabled Tom Moran to write these two programs quickly and cheaply; and the encapsulation mechanisms made it easy for him to upgrade different supported hardware when he ported Orson to a Macintosh.  PROMPT was a small program that made good use of Ada’s tasking ability; it was posted on the web and included in a CD-ROM of shareware. [Moran]



Astree is an effort to equip every train with systems that will automatically provide location, speed, distance, switch, operations, and safety information. The original prototype of the central system consisted of 300,000 lines of C code, which was difficult to maintain and suffered reliability problems.  Because Ada is recognized for its maintainability on large, complex development projects and because safety and reliability were Astree’s two main concerns, Astree decided to start over using Ada.  At present, the main Astree functions are undergoing tests in the suburbs of Paris. [Morel]



For the Helsinki radiotelescope, the tasking system was important where lots of things need to be done quickly and simultaneously; exceptions were used to recover from problematic situations; and packages were useful for keeping things orderly and for reuse of previously designed routines. [Crafts]



The CARMS tool runs in the Microsoft Windows environment.  It is designed to predict reliability, maintainability, and availability of a system.  Two of the big three domestic automakers and several aerospace companies are using this tool to solve a wide range of prediction-oriented problems. [Pukite]



The Project Manager of SIMULA said, “Ada was chosen because it guarantees an inexpensive and quality programming.  For instance, the reusability of Ada modules significantly cut down our times and costs of development.”  In addition, its reliability makes it more marketable to industry. [Ada Used to Develop a Simulator]



Originally Ada was chosen to develop the Flight Warning System of the Airbus A340 because it provides faster execution speed to the application than C or PL/M, but as the 100,000 lines of code were developed, Ada demonstrated many of its other advantages. [Ada Used for On-Board]



The Boeing 777 project had 10,000 people working on the jetliner from different internal divisions and external suppliers. The subsystems run anywhere from 70,000 to 613,000 lines of code.  I don’t know






�SLIDE 42 - DOD Applications of Ada



These systems directly support the warfighter. [IIT Research Institute]



This is the army’s primary anti-tank missile.  It is a laser guided air-to-ground missile, launched from a helicopter.



SIDPERS-3 is a standard management information system.  Over 27,000 lines of this program was reused on a subsystem for JOPES, realizing a cost avoidance of $1.15 million in design and development costs. [SIDPERS-3]



The Standard Finance System Redesign was a project to redesign the U.S. Army’s accounting system.



The Tactical Combat Operation will be the focal point of the Marine Air Ground Task Force command and control network.



Communications through SARAH are supported by four projects that use Ada. The first checks that messages are safe and unchanged.  The second,  prepares messages in DOD formats and saves to disk for transmission. The third is a smaller version of the previous program, created for use on laptops.  The fourth enables the user to edit, transmit, and receive messages at the same time. 



The Operational Flight Program controls the navigaton and weapons delivery on the A-7.



This is an analysis tool for data collected by the Stealth Bomber.



The Fuel Management system for the V-22 aircraft will be developed using all Ada code, and two other V-22 suport programs are being developed in Ada.




�SLIDE 43 - YF-22 Prototype Development



Ada has been called "The Great Facilitator" because of how its capabilities can simplify large, complex developments.  A good example of this is the YF-22 fighter-interceptor prototype development.



35 percent of the avionics cost of the aircraft was for software.



The software was developed by eight geographically separated subcontractors, using different Ada compilers and hardware platforms.



There were 12 major avionics subsystems with 650 Ada modules, composed of millions of lines-of-code. [Endoso, p. 6; Guidelines p. 5-15]



The software was brought together at least six times for major demonstrations.  It took three days to integrate.  As observed by General Edmonds, "Nothing can compare with its [Ada’s] ability to integrate different efforts." [Guidelines p. 5-15]




�

SLIDE 44 - Why Ada?



Ada can and should be used when appropriate:



Not because it is Ada but because of its capabilities.



Not because it is mandated but because it recommends itself.



Ada is not an end in itself but a means to an end.



Simply because it makes sense to make a smart decision that saves time and money. [Guidelines, p. 5-5]




�SLIDE 45 - Quality Costs Less with Proper Use of Ada



Properly engineered software is quality software.  Ada gives you this quality at reduced cost.  General Carl O'Berry had this to say about it:



"Ada is an ideal language for an architecture-based environment.  It allows designs to be abstract and at the same time provides the flexibility for each developer to concentrate on their part of the design.  Two widely different projects, CCPDS-R and Cobra Dane, were delivered on time, under budget and did what the user wanted.  They both used the same architecture, the same standards, and the same language, Ada."




�SLIDE 46 - Summary



We have looked at the powerful technical arguments in favor of using the Ada programming language.  Then we saw some equally strong business arguments for Ada.  I explained how DOD Ada policy differs from ownership, and we have heard praise from some Ada success stories.



Why Ada?



Ada was explicitly designed to support large systems well into the next century.



It surmounts past difficulties with single-vendor solutions, stovepipes, nonstandard and closed systems.



It is technically superior across a wide variety of development needs.



Demonstrably lower in cost through the entire lifecycle.



Successfully used today and growing in influence.



It is supported by DISA.



As we start to address the software engineering demands of twenty-first century, the results that are being accomplished with Ada will continue to speak for themselves.



�Works Cited



Ada 95 Language Reference Manual & Standard Libraries. Intermetrics, Inc., January 1995.



Ada 95 Rationale.  Intermetrics, Inc., January 1995.



Ada and C++: A Business Case Analysis.  Deputy Assistant Secretary of the Air Force (Communications, Computers, and Logistics), Washington, DC, July 1991



“Ada At Work.”  IIT Research Institute, January 1995.



“Ada Used for On-Board Flight Control.” Ada Information Clearinghouse, July 1994.



“Ada Used for the Boeing 777 Brake Control System.”  Ada Information Clearinghouse, July 1994.



“Ada Used for Vehicle Engine Test System.” Ada Information Clearinghouse, July 1994.



“Ada Used in Integrated Circuits Industrial Design.” Ada Information Clearinghouse, July 1994.



“Ada Used to Develop a Global Positioning System for Future Spacecraft.” Ada Information Clearinghouse, July 1994.



“Ada Used to Develop a Simulator Run by Robots.” Ada Information Clearinghouse, July 1994.



“Ada Used to Develop ‘Super’-CAD System in the HVAC Industry.” Ada Information Clearinghouse, July 1994.



“AdaSAGE Application Best at Object World.” Ada Information Clearinghouse, August 1994.



Barnes, John.  Programming in Ada 95.  Addison Wesley, 1995.



Botting, Paul and Eugene Clayton.  “Ada Used to Develop Visual and Sensor Displays.” Ada Information Clearinghouse, October 1994.



Chposky, James. Blue Magic. New York, New York:  Facts on File, 1988.



Conradi, Bengt.  “Ada Used to Develop Remote Command & Control System for PABX Communications.” Ada Information Clearinghouse, February 1994.



Conradi, Bengt.  “Mobile Communication System Developed with Ada.” Ada Information Clearinghouse, February 1994.



Crafts, Ralph.  “Ada Used for Radio Telescope Control.” Ada Information Clearinghouse, February 1994.



DaCosta, Robert.  “The History of Ada.”  Ada Information Clearinghouse, February 1991.



Davis, Dwight B. “Develop Applications On Time, Every Time.”  Datamation. November 1, 1992.



Endoso, Joyce.  “Ada gets credit for F-22's software success.”  Government Computer News. April 26, 1993. 



Ferguson, Charles H.  Computer Wars: How the West Can Win in a Post-IBM World.  New York, New York:  Times Books, Random House, 1993



Guidelines for Successful Acquisition and Management of Software Intensive Systems: Weapon Systems, Command and Control Systems, Management Information Systems. Volume 1. Department of the Air Force Software Technology Support Center, February 1995.



Hook, Audrey A., et. al.  “A Survey of Computer Programming Languages Currently Used in the Department of Defense.”  Institute for Defense Analyses. January 1995.



Hook, Audrey A., et. al.  “Availability of Ada and C++ Compilers, Tools, Education, and Training.” IDA.  12 June 1991.



IBM Corporation. Language Selection Analysis Report. Tech. Rept. FAA-85-S-0874, IBM Federal Systems Division (prepared for the Federal Aviation Administration), Gaithersburg, MD, May 1985.



Keller, John  “10 Ada Successes.”  Military & Aerospace Electronics August 1991: 17-22.



Leif, Robert C.  “Why Ada for Medical Devices?” Ada Information Clearinghouse, February 1994.



Marshall, Martin. “Object-oriented trend charted (Dataquest Inc).”  CommunicationsWeek. August 7,1995 n569 p12(1)



Mignon, Marie-France and Florence Lescroart.  “Ada Used to Develop a Manufacturing Process Supervisor.”  Ada Information Clearinghouse, February 1994.



Moran, Tom.  “Editing Videotapes and Prompting TV Talent with Ada.” Ada Information Clearinghouse, February 1994.



Morel, Etienne.  “Ada in European Railroad Signaling & Train Control.”  Ada Information Clearinghouse, February 1994.



Paterson, Alan.  “Ada Program Cuts Processing Time by 99.5%.”  Ada Information Clearinghouse, February 1994.





Pukite, Paul.  “Ada for Microsoft Windows Design Automation.” Ada Information Clearinghouse, May 1994.



“SIDPERS-3.” Ada Information Clearinghouse, April 1994.



Shrank, Michael J., Glenn W. Boyce, Jr., and Dr. Carolyn K. Davis.  “Ada in the Maintenance Arena,” 1-14, The MITRE Corporation, McLean, VA, 12 April 1995.



“Survey of Productivity and Cost Data on Ada and C++ Software Development Programs.” CTA Incorporated, 26 June 1991.



TRW.  “Case Study: Ada and C++ Cost comparison for CCPDS-R.”  1 June 1991.



TRW.  “Substudy:  A Lifecycle Cost of Analysis of Ada and C++.”  1 June 1991



“The Boeing 777 Power Management System Written in Ada.”  Ada Information Clearinghouse, July 1994.



“The TGV Control Simulator Developed in Ada.” Ada Information Clearinghouse, July 1994.



Trub, Ann.  “Ada Used to Develop Medical Analytical Systems.” Ada Information Clearinghouse, February 1994.



US Bureau of the Census. Statistical Abstract of the United States: 1995 (115th Edition), Washington, DC, 1995.



Weiderman, Nelson H.  “A Comparison of Ada 83 and C++.”   Software Engineering Institute, June 1991.









1ce960222.SCR	22 March 1996










